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PREFACE 

This book has been written on the basis of lectures which I delivered 
at the department of mathematics and mechanics of Moscow State Uni
versity. In drawing up the program for my lectures, I proceeded on the 
belief that the selection of material must not be random nor must it rest 
exclusively on established tradition. The most important and interesting 
applications of ordinary differential equations to engineering are found 
in the theory of oscillations and in the theory of automatic control. These 
applications were chosen to serve as guides in the selection of material. 
Since oscillation theory and automatic control theory without doubt also 
play a very important role in the development of our contemporary tech
nical culture, my approach to the selection of material for the lecture 
course is, if not the only possible one, in any case a reasonable one. In 
attempting to give the students not only a purely mathematical tool 
suitable for engineering applications, but also to demonstrate the appli
cations themselves, I included certain engineering problems in the lectures. 
In the book they are presented in §13, 27, and 29. I consider that these 
problems constitute an integral organic part of the lecture course and, 
accordingly, of this book. 

In addition to the material presented in the lectures, I have included in 
the book more difficult problems which were investigated in student 
seminars. They are contained in §19 and 31. The material contained 
in §24, 25, and 30 was only partially presented in the lectures. For the 
convenience of the reader, in the last chapter, the sixth, are presented 
certain facts from linear algebra in the form in which they are used in 
this book. 

In closing, I wish to express my gratitude to my students and to my 
closest co-workers V. G. Boltyanskiy, R. V. Gamkrelidze, and E. F. 
Mishchenko, who helped me in the preparation and delivery of the lectures 
and in writing and editing this book. I want also to note the decisive in
fluence upon my scientific interests exerted by the outstanding Soviet 
specialist in the field of oscillation theory and automatic control theory, 
Aleksandr Aleksandrovich Andronov, with whom for many years I have 
had a friendly relationship. His influence has substantially affected the 
character and direction of this book. 

Moscow L. S. Pontryagin 
16 July 1960 
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FOREWORD 

This book constitutes a mildly radical departure from the usual one-
semester first course in differential equations. There was a time when 
almost all first courses in differential equations were devoted to an 
exhaustive treatment of the methods and artifices by which certain ele
mentary equations can be solved explicitly. Fortunately, much of the 
material of the "classical" first course in differential equations has been 
moved back into the elementary calculus, where it finds its proper place 
among the so-called techniques of integration. 

The disadvantages of offering a methods course in differential equations 
immediately following a second course in the calculus have been recog
nized for a long time: Students, whose interest and tastes in mathematics 
had begun to take shape, are confronted with the least challenging course 
in the curriculum, and even the engineering students, to whose interests 
the methods course is supposedly dedicated, are given little idea of the 
theory of differential equations. In recent years, a number of books have 
done much to improve the level of the first course in differential equations, 
though many of these books are in the nature of treatises, more suitable 
for the two-semester course at the graduate level. 

The present volume is designed for a one-semester course in the junior 
or senior year, preferably after the course in calculus. It makes no pre
tense of being a treatise; the methods and artifices which belong to the 
calculus are omitted, though a new importance is given the linear equation 
with constant coefficients. An important feature of this book is the chapter 
on stability theory (Chapter 5) and the introduction to the Lyapunov 
theory. The engineering student will be challenged by the nontrivial 
treatment of such topics as the Watt regulator for a steam engine and the 
vacuum-tube circuit. The use of matrices and linear algebra will comple
ment the one-semester course in linear algebra which is appearing more 
frequently at the junior level. 

The Publisher 

IV 



CHAPTER 1 

INTRODUCTION 

This chapter is devoted primarily to the definition of those concepts 
which will be studied subsequently. What is a system of ordinary differ
ential equations, what do we mean by a solution of it, and how many of 
these solutions exist? These are the basic questions which we shall attempt 
to answer in this chapter. The number of solutions is determined by 
theorems of existence and uniqueness, which will not be proved here, but 
only formulated. The proofs of these and of a number of other theorems of 
the same type are given in the fourth chapter, but theorems previously 
formulated in the first chapter are repeatedly used, so that their meaning is 
thus clarified. In addition to such basic information, solutions of differen
tial equations of several of the simplest types are given in the first chapter. 
At the end of the chapter complex differential equations and their com
plex solutions are studied, and elementary facts concerning systems of 
linear differential equations are given. 

1. First-order differential equations. Equations in which the unknowns 
are functions of one or several variables and which contain not only the 
functions themselves, but also their derivatives, are called differential 
equations. If the unknown functions are functions of several variables, 
then the equations are called partial differential equations; in the opposite 
case, i.e., for the case of functions of only one independent variable, the 
equations are called ordinary differential equations. In this book we shall 
deal only with the latter. 

In applications to physics the time is taken as the independent variable, 
which is conventionally designated by the letter t; throughout this book 
the independent variable will be designated by t. Unknown functions will 
be designated by x, y, z, and so on. Derivatives of functions with respect to 
t will as a rule be designated by dots: x = dx/dt, x = d2x/dt2, and so on. 
When this is inconvenient or impossible, we shall denote the order of a 
derivative by an upper index in parentheses; for example, x{n) = dnx/dtn. 

First we shall study the first-order differential equation. This equation 
may be written in the form 

F(t, x, x) = 0. (1) 

Here t is the independent variable, x the unknown function, x = dx/dt the 
derivative, and F a given function of three variables. The function F 
need not be defined for all values of its arguments; therefore we speak of 

1 



2 INTRODUCTION [CHAP. 1 

the domain of definition B of the function F or simply, the domain B of F; 
here we have in mind a domain in the space of the three variables x, y, z. 
Equation (1) is called a first-order equation because it contains only the 
first derivative x of the unknown function x. A function x = <p(t) of the 
independent variable t, defined on a certain interval r\ < t < r2 (the 
cases Γχ = — oo, r2 = +oo are not excluded), which, when substituted 
for x in equation (1), reduces (1) to an identity on the entire interval rx < 
t < r2, is called a solution of equation (1). The interval r\ < t < r2 is 
called the interval of definition of the solution <p{t). I t is evident that sub
stitution of x = φ(ή in (1) is possible only when the function <p(t) has a 
first derivative (and, in particular, is continuous) on the entire interval 
ri < t < r2. For the substitution of x = <p(t) into equation (1) to be 
possible, it is also necessary that the point with coordinates (t, <p(t), <p(t)) 
belong to the domain B of the function F for any value of t in the interval 
rx < t < r2. 

Relation (1) connects the three variables i, x, x. In certain cases it deter
mines x as a single-valued, implicit function of the independent variables 
/, x. In this case (1) is equivalent to a differential equation of the form 

x = f(t, x). (2) 

Equation (2) is said to be solved explicitly for the derivative; in certain re
spects it is more amenable to study than the general differential equa
tion (1). It is such explicit equations which we shall now study. We 
shall not assume that (2) has been obtained as a result of solving (1) for x, 
but shall proceed from the function f(t, x) as a given function of the two 
independent variables t, x. 

In order to visualize the situation geometrically, we introduce for study 
the to-plane P. We shall plot t, as an independent variable, along the axis 
of abscissas, and x, as a dependent variable, along the axis of ordinates. 
The function / appearing in (2) need not be defined for all values of t 
and x, or, in geometric language, need not be defined at all points of the 
plane P , but only at points of a certain set Γ of P (Fig. 1). We shall assume 
that the set Γ is a domain. This means that for every point p in Γ there is 
some circle of positive radius with center at p also contained in Γ. Con
cerning the function / , it will be assumed that both the function itself and 
its partial derivative, df/dx, are continuous functions of t and x in Γ. A 
solution x = <p(t) of equation (2) may be thought of geometrically in P 
as a curve with the equation x = <p(t). This curve has a tangent at every 
point and lies entirely in the domain Γ; it is called an integral curve of the 
differential equation (2). 

Existence and uniqueness theorem. In algebra it is known that a large 
role is played by theorems which give the number of solutions to a given 
equation or system of equations. One such example is the fundamental 
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FIGURE 1 

theorem of algebra, which asserts that a polynomial of the nth degree always 
has exactly n roots (counted according to multiplicity). In exactly the 
same way, in the theory of differential equations the important theoretical 
problem is how many solutions the differential equation has. I t turns out 
that every differential equation has a continuum of solutions and this is 
why the question to be posed does not concern the number of solutions, 
but rather how the set of all solutions of a given differential equation 
can be described. The answer to this question is given by the existence 
and uniqueness theorem (Theorem 1), which is presented without proof 
in this section. The proof will be given considerably later (see §20). 

THEOREM 1. Let 

i = W, x) (3) 

be a differential equation. We shall assume that the function f(t, x) is 
defined in a certain domain Γ of the plane P of the variables t} x. We shall 
assume that the function/and its partial derivative df/dx are continuous 
in the entire domain Γ. The theorem asserts that 

(1) For every point (t0, x0) of the domain Γ there exists a solution 
x = <p(t) of equation (3) which satisfies the condition 

<p(h) = x0; (4) 

(2) If two solutions x = φ(ί) and x = X(t) of equation (3) coincide 
for one value t = t0) that is, if 

<p(t0) = X(<0), 

then these solutions are identically equal for all values of t for which 
they are defined. 

The numbers t0, XQ are called the initial values for the solution x = <p(t), 
the relation (4) represents the initial conditions for this solution, and we 
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FIGURE 2 

shall also say that the solution x = φ(() satisfies the initial conditions (4) 
or that it has initial values t0, x0. The assertion that the solution x = φ(ί) 
satisfies the initial conditions (4) (or has initial values t0y x0) assumes 
that the interval rx < t < r2, where the solution x = <p(t) is defined, 
contains the point t0. 

Thus Theorem 1 asserts that the coordinates of any point (t0, Xo) of the 
domain Γ are initial values for some solution of equation (3) and that two 
solutions with common initial values coincide. 

The geometrical meaning of Theorem 1 consists in the fact that through 
every point (t0, x0) of Γ passes one and only one integral curve of equation (3) 
(see Fig. 1). 

We have interpreted geometrically every solution x = <p(l) of equation 
(3) in the form of the graph of the function φ{ί). We now give a geometric 
interpretation of equation (3) itself. Through every point (t> x) of Γ we 
shall draw a straight line lt,x with slope f(t, x). We obtain the direction 
field (or tangent field) corresponding to equation (3) and thus the geo
metric interpretation of this equation. 

The connection between the geometrical interpretation of the equation 
and the geometrical interpretation of its solutions consists in the fact 
(Fig. 2) that any integral curve x = <p{t) is tangent to the straight line 
ItMt) a^ e a c n °f i t s points (t, <p(t)). 

EXAMPLES 

1. To illustrate the significance of Theorem 1 (in this case, of its second 
part), we shall solve the differential equation 

x = ax, (5) 

where a is a real number. Here 

f{t, x) = ax, 
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so that the function/in fact depends only on the variable x. The domain of 
/ coincides with the entire plane P. Both the function f(t, x) = ax and 
its derivative df(t, x)/dx = a are continuous functions of t and x in the 
entire plane P. Thus Theorem 1 is applicable to equation (5). By direct 
substitution into equation (5) it is verified that each of the functions 

x = ceat, (6) 

where c is an arbitrary real number, is a solution of equation (5). We shall 
show that by assigning all possible values for c, we shall obtain all solu
tions of equation (5). Let x = <p(t) be an arbitrary solution of this equa
tion. We shall show that by proper choice of the number c we have 
<p(t) = ceat. Let t0 be a certain point of the interval of existence of the 
solution x = φ(ί), and let x0 = <p(to). Let us assume that c = χ0β~α*°. 
Then the solutions x = <p(t) and x = ceat = x0eaU~to) of equation (5) 
have the same initial values (t0, x0)> and therefore coincide by virtue of 
the second part of Theorem 1. Thus, formula (6) exhausts the set of all 
solutions of differential equation (5). 

2. We shall give a mathematical description of the process of decay of 
radioactive matter. The quantity of matter not yet decayed at the instant 
t we shall denote by x(t). Then the quantity of matter which has 
decayed over the small interval of time t to t + A is determined by the 
formula ahx(t), where a is a coefficient which depends on the properties 
of the radioactive matter and is slightly dependent on ft; more accurately, 
it tends to a definite limit β as ft —* 0. Thus we have 

x(t) — x(t + ft) = ahx(t). 

Dividing this relation by ft and passing to the limit as A —» 0, we obtain 

±(t) =: —βχ(ί). 

We see that the function x(t) satisfies the very simple differential equation 
examined in Example 1, so that 

x(t) = ce~ßt. 

To determine the constant c it is sufficient to specify any initial values. 
If, for example, it is known that at the instant t = 0 there was a quantity 
of matter x0) then c = x0, and we have 

x(t) = x0e~ßt. 

The rate of decay is expressed here by the value ß having the dimension 
1/sec or (sec)-1. Instead of the value ß, the rate of decay is often charac-
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terized by the so-called half-life, i.e., the time required for half of the 
existing matter to decay. We shall designate the half-life by T and establish 
the connection between the values ß and T. We have 

whence 

2. Some elementary integration methods. The main problem facing us 
when we deal with a differential equation is the problem of finding its 
solutions. In the theory of differential equations, just as in algebra, the 
question of what it means to find the solution of an equation may be under
stood in various ways. In algebra the original aim was to find a general 
formula involving radicals for the solution of equations of any degree. 
Such were the formulae for the solution of a quadratic equation, Cardan's 
formula for the solution of a cubic equation, and Ferrari's formula for the 
solution of an equation of the fourth degree. Later, it was established that 
for equations of degree higher than the fourth, a general formula for solu
tion in radicals does not exist. The possibility remained of an approximate 
solution of equations with numerical coefficients and also the possibility 
of relating the dependence of the roots of an equation on its coefficients. 
The evolution of the concept of solution in the theory of differential 
equations was approximately the same. The original aim was to solve, or, 
as it was said, "to integrate" differential equations by means of "quadra
tures," i.e., the attempt was to write the solution in terms of the ele
mentary functions and their integrals. Later, when it became clear that a 
solution in this sense exists only for very few types of equations, main 
emphasis of the theory was transferred to the study of general laws of the 
behavior of solutions. In this section we shall develop integration methods 
by quadratures for certain first-order differential equations. 

(A) We shall solve the equation 

* = /(0, (i) 
the right-hand side of which depends only on the independent variable L 
We shall assume that the function f(t) is defined and continuous on the 
interval rx < t < r2. Under this assumption, equation (1) satisfies the 
conditions of Theorem 1, and the domain Γ for this equation is a strip in 
the to-plane P which is determined by the inequalities rx < t < r2. Let 
t0 be an arbitrary point of the interval rx < t < r2; we assume 

*o(0 = ff(T)dr. 
JtQ 
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F I G U R E 3 

The function <p0(t) is defined on the interval rx < t < r2. By inspection, 
an arbitrary solution of the equation (1) is given by the formula 

X = φ({) = φο(() + C, (2) 

where c is an arbitrary constant. The right-hand side of (2) is, as is known, 
the indefinite integral of the function f(t), so that (2) may be written in the 
form 

x = f f(t)dt. 

I t is seen by direct inspection that the function (2) satisfies equation (1). 
Further, the graph of every solution (2) for an arbitrary c is obtained from 
the graph of the solution x = <p0(t) by using a vertical-parallel translation 
by the quantity c (Fig. 3). From this it is evident that through every 
point of Γ passes a curve defined by formula (2). Hence, by Theorem 1 it 
follows that (2) actually encompasses the set of all solutions of (1). 

(B) We shall solve the equation 

9(z), (3) 

the right-hand side of which depends only on the unknown function x. 
We shall assume that the function g(x) is defined and has a continuous de-
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rivative on the interval α,χ < x < a2. Then Theorem 1 is applicable to 
equation (1), and a strip in the to-plane P which is determined by the 
inequalities α,χ < x < a2 serves as the domain Γ. For the sake of sim
plicity, we assume in addition that on the interval α,χ < x < a2 the func
tion g(x) does not vanish and consequently does not change sign. Let xo 
be an arbitrary point of the interval ax < x < a2; we assume 

The function G0(x) is defined on the interval ax < x < a2, and its deriva
tive on this interval is never zero; therefore the function GQ(X) has an 
inverse, i.e., there exists a function ^0(0 such that 

GoGMO) = t. (5) 

Consequently, an arbitrary solution of equation (3) is given by the formula 

x = φ(ή = f 0(i - c), (6) 

where c is an arbitrary constant. The function φ(ί) is monotonic and 
assumes all values belonging to the interval αχ < x < a2. 

We shall first prove that the function (6) is a solution of equation (3). 
From (5) it follows that 

Go(*(0) = βο(*ο(< -e)) = t - e . (7) 

Differentiating this relation with respect to t, we obtain 

G'0(Ht))i(t) = 1, 
hence [see (4)] 

φ(ί) = gty(t)). 

Since the function ψοθ) is obtained as the inverse of the monotonic func
tion Go(x), which is defined on the entire interval α,χ < x < a2, the func
tion ^o(0 tan<i consequently ψ(ί)] is monotonic and assumes all values 
on the interval a\ < x < a2. Since, further, the integral curve (6) is ob
tained from the curve x0 — ψ0(0 by a horizontal-parallel translation 
(Fig. 4), a curve of the form (6) passes through every point of the strip Γ. 
Thus by Theorem 1, (6) contains the set of all solutions of equation (3). 

Note. The relation (7) shows that the function ψ(ί) is the inverse of the 
function Cro(aO + c, which is the indefinite integral of the function l/g(x). 
Thus all solutions x = ψ(ί) of equation (3) are described by the formula 
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If the function t = G0(x) + c is taken as the unknown function, then we 
obtain for it the differential equation 

(U 
dx 

1 

which is equivalent to equation (3). I t is solved by the method presented 
in (A), which gives (8). 

(C) We shall solve the equation 

* = f(t)g(x), (9) 

which is called an equation with separable variables. We shall assume that 
the function f(t) is defined and continuous on the interval rx < t < r2 
and that the function g(x) is defined and has a continuous derivative on the 
interval a± < x < a2. Then Theorem 1 is applicable to equation (9), 
and the rectangle determined by the inequalities 

Γχ < t < r2, ai < x < a2 

serves as its domain Γ. For the sake of simplicity, we shall assume that 
g(x) does not vanish on the interval αχ < x < a2. For the solution of (9) 
we form two auxiliary equations: 

£-*». 
dx 
du = g(x). 

(10) 

(11) 

Equations (10) and (11) are solved by the rules given in (A) and (B). Let 
u = φο(ΐ) be some solution of equation (10) and x = ψο(η) some solution 
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of equation (11) defined on 6χ < u < b2 and assuming all values belong
ing to the interval α,χ < x < a2 [see (B)]. Hence an arbitrary solution 
of equation (9) can be written in the form 

x = X(t) = *o(*o(0 - c), (12) 

where c is an arbitrary constant. The interval of variation of t for every 
solution (12) must be such that values of u — <p0(t) — c belong to the 
interval b\ < u < b2. 

We shall prove first that the function (12) is a solution of (9). Since the 
function ψ0(η) satisfies (11),ψ'0(φ0(ί) — c) = ö#o(^o(0 — c)] = g(x(t)). 
Further, <p(t) = f(t) [see (10)]. Differentiating equation (12), we obtain 

*(0 = t'o(<Po(t) - c)*o(0 = g(*(t))f(t). 
Thus the function x = x(t) satisfies (9). 

We shall now show that formula (12) gives all solutions of equation (9). 
Let (t0, x0) be an arbitrary point of Γ. Since the function x = ^o(^) 
assumes all values on the interval αχ < x < a2, there exists a value u0 
such that ^o(^o) = ^o- Let us set c = >̂o(̂ o) — ^oj then by (12) we 
have x(£0) = ^o(^o) = #o· Thus through every point (t0, x0) of Γ passes 
a curve of the form (12) and, by Theorem 1, formula (12) contains all 
solutions of equation (9). 

Note. Formula (12) may be written in the form 

fwj = fmit 

[compare (A) and (B)]. 
(D) We shall solve the equation 

y = h Q) , (13) 

in which the right-hand side depends only on the ratio of the variables y 
and t. Such an equation is called homogeneous. We shall assume that h(x) is 
defined and has a continuous derivative on the interval a\ < x < a2. 
Then Theorem 1 is applicable to equation (13), and Γ consists of all points 
of the ty-pl&ne P satisfying the inequality 

αι < j < a2 (t 9* 0). 

For the sake of simplicity, we also assume that on the interval a χ < x < a2 
the function h(x) — x does not vanish. We shall solve (13) by making a 
change of variables, that is, instead of the unknown function y we shall 
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introduce an unknown function x by setting 

y = xt. (14) 

By replacing the function y in equation (13) by its expression (14) we 
obtain for the new unknown x the equation 

xt + x = h(x), 

or, what is the same thing, 

h(x) — x x = -t 

This equation is an equation with separable variables and may be solved 
by the method shown in (C). 

(E) We shall solve the equation 

y = a(t)y + b(t). (15) 

This equation is called linear, because the unknown function and its 
derivative appear linearly in it. We shall assume that the functions a(t) 
and b(t) are defined and continuous on the interval ri < t < r2. Then 
for equation (15) Theorem 1 is applicable, and the domain Γ is defined by 
the inequalities 

7*1 < t < r2. 

If b(t) = 0, then equation (15) is called homogeneous. 
To the nonhomogeneous equation (15) corresponds the homogeneous 

equation 
x = a(t)x, (16) 

which we shall study first. Equation (16) is an equation with separable 
variables and it can be solved by the method shown in (C). However, 
the function g(x) in the given equation is equal to x and can vanish. 
Therefore, for the solution of equation (16) it is necessary to investigate 
separately the domains x > 0 and x < 0 and also the solution x = 0. 
Instead, we shall write the solution directly by means of the formula 

x = c exp ΓI a(r) dr\ > (17) 

where r\ < t0 < r2 and c is an arbitrary constant. Substitution of (17) 
into (16) shows that (17) gives a solution; we shall show that it contains 
the set of all solutions. Let (#0, Xo) be an arbitrary point of the strip 
ri < t < r2. In order that the solution (17) have the initial values (#07 #o) 
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it is sufficient that the constant c satisfy the condition 

x0 — c exp Γ j α(τ) dr\ > 

from which c is uniquely determined. 
The nonhomogeneous equation (15) is solved by the method of variation 

of parameters. We set 

y = c exp Γ / α(τ) dr] (18) 

and assume that c is not a constant quantity but depends on t. Substitution 
of (18) into (15) gives 

Thus 

cexp\C a(r) dr\ = b(t). (19) 

c = b(t) exp — I α(τ) dr · 

This differential equation for c is solved by the method presented in (A). 
The method of variation of parameters is in this case a method of 

introduction of a new unknown. That is, instead of the unknown function y, 
we introduce, by (18), a new unknown function c. By finding an arbitrary 
solution of (19), we also find an arbitrary solution of (15) by formula (18). 

EXAMPLES 

1. We shall solve the equation 

*2 — l 

Here, as in (A), the right-hand side, 

2 

2 (20) 

/(«) = «2 - 1 

depends only on the independent variable 2, but it has discontinuities at 
the points t = 1 and t = — 1 . 

Thus the domain Γ in the fcr-plane P consists of a strip, — 1 < t < 1, 
and two half-planes, t < — 1 and t > 1. In order to solve (20) by the 
rules indicated in (A), it is necessary to divide the interval — oo < t < +oo 
into three intervals, — oo < t < — 1 , —1 < t < 1, 1 < t < +oo, and 
in each of them to take the indefinite integral of f(t). To carry out the 
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FIGURE 5 

integration, we expand the function f(t) into partial fractions: 

x — t t+1 
For each of the three intervals, the solution of equation (20) is written in 
the form 

x = J ( — L · - - j ^ j dt = In \t - 1| - In \t + 1| + c 

= In t - 1 
t+ 1 + c. (21) 

As was indicated in §1, a continuous function which satisfies the equation 
and is defined on the interval is called a solution of the differential equation; 
thus formula (21) for a fixed c defines not one but three solutions of 
equation (20), the first of which is defined on the interval —ao<t<—l, 
the second on the interval — 1 < t < 1, and the third on the interval 
1 < t < GO (Fig. 5). 
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2. We shall solve the equation 

x2 - 1 
* = ^ - ~ (22) 

The right-hand side here depends only on x; it is defined, continuous, and 
differentiable for all values of x, and for this reason the domain Γ, for equa
tion (22), coincides with the entire plane P. The function 

ff(s) = 
x 2 - l 

y 

on the right-hand side of equation (22), vanishes at the points x = — 1 
and x = 1; for the solution of equation (22) according to the rules in
dicated in (B), therefore, it is necessary to split Γ into the three domains 
determined by the inequalities 

— oo < x < — 1, — 1 < x < + 1 , 1 < x < oo, (23) 

and in addition to investigate the obvious solutions x = 1, x = + 1 . In 
each of the domains (23), the solution x = ψ(ί) is determined implicitly 
from the equation 

I 2dx _ 
J x* - 1 " h 

or else from the equation 
i h — i| * 
In r-^r\ = t — Ci. 

\x + 1| 

This equation is equivalent to the equation x - 1 
x + 1 

= e
f - e i = c2e\ (24) 

where c2 is an arbitrary positive constant. On the intervals — oo < x < 
—1 and 1 < x < oo equation (24) may be written in the form 

x — 1 t 
= c2e , x+ 1 

and on the interval — 1 < x < 1 in the form 

x — 1 t 

Τ+Ί = - C 2 e ; 

both cases can be embraced by a single formula 

x — 1 t « ' , (25) 
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FIGURE 6 

where c is an arbitrary constant other than zero. Solving equation (25) 
for x, we have 

where c ?* 0. 
For a fixed negative c formula (26) gives one solution, located in the strip 

—1 < x < 1. For a fixed positive c formula (26) defines two solutions, 
of which one, defined on the interval — oo < t < — In c, is located in the 
half-plane x > 1, and the other, defined on the interval —In c < t < oo, 
is located in the half-plane x < — 1. In addition to the solutions located in 
the domains (23), equation (22) has two more solutions, x = 1 and x = — 1, 
which are obtained formally from (26) for c = 0 and c = oo. Since one 
of the solutions found (Fig. 6) passes through every point of P , it follows 
from Theorem 1 that other solutions do not exist. Thus formula (26) 
includes the set of all solutions of equation (22) if c is allowed to take all 
real values, including oo. 

3. Example 2 is a typical one for an equation of the form 

x = g(x), (27) 

where g(x) is a continuously differentiable function defined for all values x, 
— oo < x < GO. Theorem 1 is applicable to equation (27), Γ being the 
entire plane P . We note first that, if a is a zero of the function g(x), that is, 
if g(a) = 0, then the function x = a is a solution of equation (27). Thus 
to every zero of g(x) corresponds a solution whose graph is a horizontal 
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FIGURE 7 

straight line x = a in the plane P. For the sake of simplicity, we shall 
assume that the zeros of g(x) do not have accumulation points. Then P 
will be decomposed by solutions of the form x = a into a series of strips, 
including possibly one or two half-planes of the form x < a! and x > a". 
In each of these strips equation (27) may be solved by the method in
dicated in (B). 

We shall note certain essential properties of these solutions. Let α,χ 
and a2, «i < a2, be two successive zeros of g{x), so that on the interval 
αχ < x < a2 the function g(x) does not vanish. Let x = ^ 0 (0 be any 
solution of (27) in the domain ax < x < a2. As was noted in (B), all 
other solutions in this domain are obtained by the formula x = ψοψ — c), 
i.e., by a horizontal-parallel translation of the solution ψο(ί)- Since on the 
interval αλ < x < a2 the function g(x) does not vanish, the solution 
ψ0(ί) is monotonic. In order to be definite, we shall assume that g(x) > 0 
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for ai < x < a2. Then the solution φ0(1) is a monotonically increasing 
function. From Theorem 1 it is comparatively easy to derive the fact that 
the solution ^ 0 (0 can be continued to the interval — oo < t < oo, whence 

lim ^o(0 = öi, lim ^ 0 (0 = «2· 

We shall now describe the behavior of the solutions in the domain x > a, 
where a is the maximum zero of the function g(x) (if such a value exists). 
I t is obvious that g(x) 5̂  0 for x > a; to be precise, we shall assume that 
g(x) > 0 for x > a. Let ψ0(ΐ) be some solution of (27) passing into the 
domain x > a. By virtue of (B) all solutions in this domain are given by 
the formula x = \l/0(t — c). From Theorem 1 it is comparatively easy to 
derive the fact that the solution ^o(0 can be continued over the interval 
— 00 < t < r, whence 

lim ψ0(ί) = a, l im^o(0 = +00; 
t—>— 00 t—»r 

here r may assume finite values or the value +00. Thus in the half-plane 
x > a two distinct cases are possible: every solution is defined on the 
interval —00 < t < +00 or every solution is defined on the interval 
— 00 < t <-r, where the number r is finite and depends on the solution 
selected. Since a solution of the form described above passes through 
every point of the plane P (Fig. 7), the solutions described above consti
tute, by Theorem 1, the set of all solutions of equation (27). 

4. We shall show that, if the right-hand side of the equation does not 
have a continuous derivative, then the second part of Theorem 1 (unique
ness) need not apply. Let us consider the equation 

x = 3x2ls. (28) 

The right-hand side of equation (28) is defined and continuous for all values 
of x, but its derivative 2x~1,s has a discontinuity at the point x = 0. If 
the set of all points for which x ^ 0 is taken as the domain Γ, then Theo
rem 1 is applicable to equation (28) in this domain, and in each of the 
half-planes x > 0, x < 0, equation (28) can be solved by the method 
indicated in (B). Solving equation (28) by this method, we obtain 

x113 = t - c. (29) 

Part of the graph of the function (29) (for t < c) is in the half-plane x < 0 
and part (for t > c) is in the half-plane x > 0. I t is immediately verified, 
however, that the function (29) [that is, x — (t — c)3] is a solution of (28) 
for all values of t in the interval — 00 < t < +00. At the same time, 
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FIGURE 8 

x = 0 is also a solution of equation (28). Thus through every point x = 0, 
t = c of the straight line x = 0 pass two solutions (Fig. 8): the solution (29) 
and the solution x = 0. We see that the second part of Theorem 1 (unique
ness) does not hold for equation (28). 

3. Formulation of the existence and uniqueness theorem. In §1 we 
studied a first-order differential equation and formulated an existence and 
uniqueness theorem for this equation. The theory of ordinary differential 
equations deals also with more general systems of equations. Usually a 
system of ordinary differential equations consists of as many equations as 
there are unknown functions in the system; in this connection, all the un
known functions are functions of one and the same independent variable. 
In all cases the existence and uniqueness theorem is the fundamental 
theoretical proposition which makes it possible to approach the study of a 
given system of differential equations. 

The existence and uniqueness theorem is formulated and proved for a 
system of equations which superficially appears to be of a rather particular 
type. But in fact, systems of comparatively general type reduce to this 
system of equations. Systems of differential equations of the particular 
type discussed here we shall in the future call normal, although this term 
is by no means generally accepted. 
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The system 

xi = f%x\x2
J . . . , x n ) , < = Ι , . - . , η , (1) 

of ordinary differential equations is called a normal system. In this system 
t is the independent variable, xl, . . . , xn are the unknown functions, and 
Z1, . . . , / n are functions of n + 1 variables defined in a certain domain Γ 
of the (n + l)-dimensional space of the variables t, xl, . . . , xn. Here 
and in the sequel, a "domain" of euclidean space is understood to be an 
open set, i.e., a set which together with every point contains a certain 
sphere of positive radius with its center at this point. It will always be 
assumed that the functions 

Ν,χ\χ2,...,χη), i= 1, . . . , n , (2) 

are continuous in the domain Γ; it will also be assumed that their partial 
derivatives 

« W - - * · ) , U-l », (3) 

are continuous in Γ. It should be noted that the partial derivatives (3), 
the continuity of which is assumed, are taken only with respect to 
xl, . . . , xn, but not with respect to the independent variable t. 

In the presently fashionable theory of ordinary differential equations, 
the continuity of the derivatives (3) is not usually required, and this 
requirement is replaced by a weaker one, namely a Lipschitz condition for 
the functions (2). I consider that this generalization is nonessential and 
there is no need to dwell on it (this condition will be formulated below). 

By a solution of system (1) we shall mean a system of continuous func
tions 

χ*=φ\1), t = l , . . . , n , (4) 

which are defined on some interval r^ < t < r2 and which satisfy (1). 
The interval rx < t < r2 is called the interval of definition of the solution 
(4) (the cases n = — oc, r2 = +oo are not excluded). It is assumed that 
the system of functions (4) satisfies the system of equations (1) if after 
substitution of the functions (4) into (1) in place of xl, . . . , x11, the rela
tions (1) reduce to identities in t on the entire interval rx < t < r2. For 
this substitution to be possible, it is necessary that the functions (4) have 
derivatives at every point of the interval rx < t < r2 and that the right-
hand sides of (1) be defined for all values of their arguments. Thus the 
point with coordinates 

t, φ\ί), . . . , φ»(ί) 

must belong to Γ for all values of t in the interval rx < t < r2. We shall 
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now give a formulation of the existence and uniqueness theorem for the 
normal system (1). 

THEOREM 2. Let (1) be a normal system of ordinary differential equa
tions. Here the right-hand sides of equations (1) are defined in a certain 
domain Γ, and the functions (2) and (3) are continuous in this domain. 
Then, for every point 

to, #o> #o> · · · > #o (5) 

of Γ, there exists a solution 

x{ = At), i = 1, . . . , n, (6) 

of the system (1), which is defined on some interval containing the point 
t0 and which satisfies the conditions 

<p\t0) = χ%
0} i = 1, . . . , n. (7) 

Further, if there exist two solutions 

xi = ψ\ΐ), i= 1, . . . , n, 
(8) 

x% = x\f), i = 1, . . . , n, 

of (1) which satisfy the conditions 

ψ%) = X%) = xl i = 1, . . . , n, (9) 

each defined on an interval of values of t containing t0j then these solu
tions coincide wherever both are defined. 

The values (5) are called initial values for the solutions (6) and (8), and 
(7) and (9) are called initial conditions for these solutions. We shall say 
hereafter that our solutions have the initial values (5) or satisfy the initial 
conditions (7) and (9). Thus the existence and uniqueness theorem for a 
normal system can be formulated briefly as follows: 

For any initial values (5) there always exists a solution of system (1) 
with these initial values, which is defined on a certain interval containing 
the point t0. Further, if there are two solutions with identical initial 
values (5), each of which is defined on a proper interval containing t0, 
then these solutions coincide on the common part of these intervals. 

The existence and uniqueness theorem permits us to formulate and solve 
the problem of the maximum interval of existence of a solution with given 
initial values. In order to attack this problem we shall assume that we 
have two solutions with the same initial values (5), the first solution being 
defined on the interval r\ < t < r2 and the second solution on the interval 
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Si < t < s2. Both these intervals contain the point £0> that is, they in
tersect. If one of the intervals were contained in the other, for example, 
the first one in the second, then consideration of the first would be super
fluous, since, by virtue of uniqueness, the first solution coincides in this 
case with the second wherever it is defined. I t can happen, however, that 
neither of the two intervals is contained in the other; for example, it may be 
that r i < Si < r2 < s2. I n this case, the uniqueness implies that the two 
solutions coincide on the interval si < t < r2; the first solution is defined 
only on the half-interval Τχ < t < Si and the second only on the half-
interval r2 < t < s2. On the interval rx < t < s2) which contains both 
original intervals, no solution has as yet been formally defined. This solu
tion, however, is very easy to define. I t is only necessary to consider 
that on the interval rx < t < r2 this solution coincides with the first one, 
and on the interval Si < t < s2 it coincides with the second. Thus we 
arrive at a solution defined on the interval r\ < t < s2 which contains 
both of the original intervals, and there is no need to investigate the 
original solutions which are defined on the subintervals of the interval 
ri < t < s2. I t is evident that if there is a finite number of solutions with 
common initial values, then it is possible to construct the solution on the 
interval which contains all the intervals of existence of the original solu
tions. Also, all solutions with common initial values can be easily con
solidated into one, and a concept of the maximum interval of existence of 
a solution with given initial values can be attained. We shall formulate 
and prove the corresponding proposition: 

(A) For any initial values (5), there exists a solution 

xi = tf(t), i = 1, . . . , n, 
of the system (1), defined on a certain interval rrti < t < m2, such that 
for any solution xl = φι(ί), i = 1, . . . , n, of system (1) with initial values 
(5), its interval of definition is contained in the interval m\ < t < m2. 
By virtue of the uniqueness theorem, the solution xl = φ%(ί) coincides 
with the solution xl = φι(ί) along its entire interval of definition, and 
for this reason there is no need to consider it. The interval rrti < t < m2 
will be called the maximum interval of existence for the initial values (5). 

We shall prove the existence of a maximum interval for given initial 
values (5). To each solution of system (1) with initial values (5) corre
sponds its own interval of definition. The set of all right-hand endpoints 
of these intervals we shall denote by R2 and the set of all left-hand end-
points by R\. The upper bound of the set R2 we shall denote by m2 (in 
particular, m2 may be +oc), and the lower bound of the set Αχ we shall 
denote by m\ (in particular, mi may be — oo). We shall now show that 
mi < t < m2 is a maximum interval for the initial values (5). We shall 
first construct the solution xl = φι(ή, i = 1, . . . , n, with initial values 
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(5) which is defined on the interval πΐχ < t < m2. Let t* be an arbitrary 
point of this interval, that is, πΐχ < t* < ra2. To be precise we assume 
that t* > t0. Since ra2 is an upper bound of the set Ä2, there exists a 
solution xl = ψ%(ί), i = 1, . . . , ft, of (1) with initial values (5), whose in
terval of definition rx < t < r2 contains the point t*, and we set ^(t*) = 
ψι(ί*), i = 1, . . . , ft. The value obtained for the solution φ\ί) at the 
point t = t* does not depend on the choice of the solution xl = ^*(i), 
i = 1, . . . , ft. Indeed, if instead of the solution xl = ψι(ί), i = 1, . . . , n, 
we took xl = Xl(t), i — 1, . . . , ft, with initial values (5) and interval of 
definition sx < t < s2 which also contains the point t*, then by virtue of the 
uniqueness (see Theorem 2) we would have ψι(ί*) = X%(t*), i = 1, . . . , n. 
Thus the functions !p%(t), i = 1, . . . , n, are uniquely defined on the entire 
interval πΐχ < t < m2. At the same time they constitute a solution of 
(1) with initial values (5). Indeed, near each point t* of the interval 
mi < t < m2 the system of functions $>%(t), i = 1, . . . , n, coincides by 
construction with some solution of (1), and for this reason the functions 
φ%(ΐ), i = 1, . . . , n, are continuous and constitute a solution of (1). It 
remains to be shown that the interval πΐχ < t < m2 is maximal. Let 
xl = <pl(t), i = 1, . . . , η, be a certain solution of system (1) with initial 
values (5) which is defined on the interval n < t < r2. Then ri is an 
element of the set R\ and r2 is an element of the set Ä2, and therefore 
mi < fij r2 < m2, that is, the interval rx < t < r2 is contained in the 
interval πΐχ < t < m2. 

We shall formulate here without proof one more existence theorem, 
which we shall later obtain as a simple corollary of Theorem 2. 

THEOREM 3. Let 

xl = Σ ai(t)xj + b\t), i = 1, . . . , n (10) 

be a normal linear system of equations. Here the coefficients a)(f) and 
the free terms bl(t) are continuous functions of t defined on a certain 
interval q\ < t < q2. Then for arbitrary initial values 

to, xl, χο, . · · , xo, Qi < t0 < fli, (11) 

there exists a solution of (10) with these initial values which is defined 
on the entire interval q\ < t < g2. 

In other words, the maximum interval of existence of the solution of 
the linear system (10) is the entire interval gx < t < g2 [for the arbitrary 
initial conditions (11)]. 

For the case when the coefficients and free terms of system (10) are de
fined on the entire straight line, i.e., when q^ = — oo, q2 = +oo for any 
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initial values, there exists a solution of (10) defined on the entire infinite 
interval — oo < t < +00. 

The solutions of a normal system (1) can be interpreted geometrically 
as integral curves in the (n + 1)-dimensional space with coordinates 
t, x1, . . . , xn (compare §1). The equations of an integral curve have the 
form 

x* = φ\ί), i = 1, . . . , n, (12) 

where (12) is a solution of the system. 
The system (1) itself may be interpreted with the aid of the direction 

field in an (n + l)-dimensional space (compare §1). 

EXAMPLES 

1. We shall solve the normal linear system of equations 

x = —ωι/, y =ωχ. (13) 

The domain Γ for this system is the entire space (t, x, y). By direct inspec
tion, we see that the system of functions 

x = c\ cos (c*)t + e2), y = Ci sin (ωί + c2), (14) 

where C\ and c2 are arbitrary constants, is a solution of (13). To show that, 
by proper selection of the constants ci and c2, an arbitrary solution can be 
obtained from formula (14), we shall prescribe initial values t0, x0, y0 and 
show that among the solutions (14) there is a solution with these initial 
values. We obtain for the constants cx and c2 the conditions 

ex cos (ωί0 + c2) = xo9 Ci sin (ωί0 + c2) = y0- (15) 

Let p and φ be polar coordinates of the point (x0, y0), so that 

x0 = p cos φ, y0 = p sin φ. 

Then equations (15) may be rewritten in the form 

C\ cos (o^o + c2) = p cos φ, C\ sin (ωί0 + c2) = p sin φ. 

By setting 
ci = p, c2 = φ — ωΖ0, 

it is evident that we shall satisfy conditions (15). Thus, through every 
point (t0, x0,2/0) passes a solution given by formula (14). By virtue of 
Theorem 2 (uniqueness), formula (14) contains the set of all solutions. 
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2. Let us solve the equation 

x = x2 cos t (16) 

with separable variables. The domain Γ for this equation is the entire 
plant (t, x). For x > 0 and for x < 0 this equation can be solved by the 
method presented in (C) of §2. For each of these half-planes we have 

! % - ! 
cos t dt, 

or 

Thus we obtain 

1 · * = sm t — c. 
X 

x = -^— - - (17) 
c - s i n i v J 

In addition to the solutions described by this formula, we have the trivial 
solution 

x = 0. (18) 

We shall show that formulas (17) and (18) include the set of all solutions 
of equation (16). Let (t0, #o) be arbitrary initial values. If x0 = 0, then 
the solution (18) has these initial values. If x0 ^ 0, however, then the 
constant c has the value 

c = sin t0 H 
x0 

The solution (18) is defined on the interval (— oo, +oo), and this interval 
is the maximum interval of existence of the solution for the corresponding 
initial values. In exactly the same way, for \c\ > 1 formula (17) deter
mines one solution denned on the interval (— oo, oo), and this interval is 
maximal. For a fixed constant c which satisfies the inequality \c\ < 1, 
formula (17) gives not one solution, but an infinite set of solutions. Each 
individual solution in this case is defined on the interval r\ < t < r2, 
where rx and r2 are two consecutive zeros of the function sin t — c. This 
interval is the maximum interval of existence of the solution for the 
corresponding initial values, for, as t approaches the endpoints of the 
interval, the function (17) tends to infinity (Fig. 9). 

3. We shall show that if the right-hand sides (2) of the system of equa
tions (1) are k times continuously differentiable, i.e., have continuous 
derivatives of the kth order (including derivatives of mixed type) with 
respect to all variables t> xl, . . . , xn, then the (fc + l)st derivative of the 
solution (4) of (1) exists and is continuous. 
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x = c—sin t 

\J 
♦= ^ ri r2 

c—sin £ 

FIGURE 9 

Indeed, for (4), we have the identity 

i — 1, . . . , n. (19) 

If the right-hand sides (2) have continuous first derivatives, then the right-
hand side of (19) has a continuous derivative with respect to t, so that 
φ\ί) exists and is continuous. By differentiating (19) k times, we establish 
(in order) the existence and continuity of all derivatives of the 2nd, 
3rd, . . . , (k + l)st order of the functions <pl(t). 

4. Reduction of a general system of differential equations to a normal 
system. In the preceding section we formulated an existence and unique
ness theorem for a normal system of differential equations. Here it will 
be shown how quite general systems of differential equations may be 
reduced to normal systems, and at the same time an existence and unique
ness theorem will be established for these general systems. 
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We shall first give the concept of a system of differential equations in 
the general form. 

In the case of one unknown function x of an independent variable t it is 
customary to consider one equation, which can be written in the form 

F(t, * , * , . . . , x(n)) = 0. (1) 

Here t is an independent variable, x is the unknown function, and F is a 
given function of n + 2 variables. The function F need not be defined 
for all values of its arguments; for this reason we speak of the domain of 
definition B of the function F. Here we have in mind the (n + 2)-dimen-
sional domain B in which the coordinates of a point are the variables 
t, x, x, . . . , x(n). If the highest-order derivative entering the differential 
equation is equal to n, then we speak of an nth-order equation. By a 
solution of equation (1) we shall mean a continuous function x = φ(ΐ) of 
the variable t, which is defined on a certain interval r\ < t < r2, such 
that substitution of <p(t) for a; in (1) reduces (1) to an identity in t on the 
interval r\ < t < r2. It is clear that substitution of x = φ(ί) in (1) is 
possible only when <p(t) has derivatives up to the nth order, inclusive, on 
the entire interval of existence rt < t < r2. For the substitution of 
x = <p(t) into relation (1) to be possible, it is also necessary that the point 
with coordinates {t, <p(t), <p(t), . . . , <p(n)(t)} belong to the domain B of F 
for any t in the interval n < t < r2. 

If there are two unknown functions of one independent variable, then 
two differential equations are considered which together form a system 
of equations. This system can be written in the form 

F(t, x, x, . . . , x(m), y,i,..., x(n)) = 0, 
(2) 

G(t, * , * , . . . , x(m), y,i/,..., y{n)) = 0. 

Here t is an independent variable, x and y are the two unknown functions, 
and F and G are two functions, each of m + n + 3 variables, which are 
defined in a certain domain B. If the highest-order derivative of x entering 
into (2) is equal to m, and the highest-order derivative of y entering into 
(2) is equal to n, then the number m is called the order of the system (2) 
with respect to x, the number n is the order of the system (2) with respect 
to y, and the number m -f- n is called the order of the system (2). A pair of 
continuous functions x = <p(t) and y = ψ(ί) defined on a certain interval 
ri < t < r2 will be called a solution of (2) if they have the property that 
substituting them into (2) reduces (2) to an identity in t on the entire 
interval rx < t < r2. As in the case of one equation, it is assumed that 
conditions are satisfied which make possible the substitution of x = <p(t)f 
y = ψ(ί) into (2). 
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Systems of differential equations with three or more unknown functions 
of one independent variable are defined similarly. If the unknown func
tions of a system of differential equations are the functions x1, . . . , xn, and 
the highest-order derivative of x% entering the system is q^ i — 1, . . . , n, 
then the number qi is called the order of the system with respect to x%, and 
the number q = qY + q2 + · · · + qn is called the order of the system. 
Thus, the normal system (1) of §3 is of order n. 

If (1) can be solved for x{n\ then equation (1) may be rewritten in the 

x(n) =f(t,x,x,...,x(n-1)). (3) 

In exactly the same way, if (2) can be solved for x(m) and y(n), then this 
system can be rewritten in the form 

xM = /(<, z, ± , . . . , *<·»-», » , * , . . . , y{n~l)), 
(4) 

yM = g(t, x,x,..., x{m~l\ y,y,..., y{n~l)). 

Equation (3) and system (4) are said to be solved for the highest derivatives. 
Systems with an arbitrary number of functions which can be solved for the 
highest derivatives are defined analogously. In particular, the normal 
system (1) of §3 can be solved for the highest derivatives. Later we shall 
concern ourselves almost exclusively with systems which can be solved 
for the highest derivatives. 

We shall now show that any nth-order system of differential equations 
which is solved for the highest derivatives may be reduced to a normal 
nth-order system. To begin, we shall show how one nth-order equation is 
reduced to an nth-order normal system. 

(A) Let 
yin) = /ft » , * , · · . , y{n~l)) (5) 

be an nth-order differential equation which is solved for the highest 
derivative. Here t is an independent variable and y is an unknown function 
of the variable t. Further, f(t, y,y, . . . , 2/(n_1)) is a given function of n + 1 
variables t, y, y, . . . , y ( n _ 1 ) , which is defined in a certain domain Γ of an 
(n + 1)-dimensional space. With respect to the function 

f(t, y,y,..., y{n-1}), 

we shall assume that it is continuous in Γ and that its partial derivatives 

θ/Ö, y, ϋ, · · · , y{n~l)) 
dy (fc) k = 0, 1, . . . , n — 1, 

(where it is assumed that ym = y) are also continuous in Γ. To change 
equation (5) into a normal system of equations, new unknown functions 
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of the independent variable t are introduced by means of 
the equalities 

x1 = y, x2 = ϋ, . . . , xn = 2/( Λ"υ. (6) 

Thus equation (5) is equivalent to the system 

x1 = x2, 
x2 = x3, 
: (7) 

Xn = f(t, X\ X2,..., Xn). 

Theorem 2 implies that for every point t0, y0, y0, . . . , 2/ow"1} of Γ there 
exists a solution y = ψ(ί) of equation (5) which satisfies the initial condi
tions 

Λ<ο) = io\ k = 0, 1,. . ., n - 1, 

or, as it is called, a solution with initial conditions 

h, 2/0,2/0, · · · , tfS1"1^ (8) 

Further, any two solutions with initial values (8) coincide on the common 
part of their intervals of definition. If equation (5) is linear, i.e., if / is 
linear with respect to the variables y, y, . . . , 2/ ί η~υ, and if its coefficients 
are defined and continuous on the interval q\ < t < q2, then for any 
initial values t0, y0, y0, . . . , 2/ow_1), where qi < to < q2, & solution 
V — Y(t) exists which is defined on the entire interval qi < t < q2. 

We shall prove that equation (5) is equivalent to the system (7). We 
shall assume that y satisfies (5) and prove that the functions x1, . . . , xn 

defined by (6) satisfy (7). By differentiating the relations (6) which intro
duce the new unknown functions x1, . . . , xn, we obtain 

xk = y{k\ k = 1, . . . , n - 1, (9) 

xn = y(n\ (10) 

Replacing the right-hand sides of (9) on the basis of (6) and the right-hand 
side of (10) on the basis of (5), which is satisfied by y, we obtain (7). Let 
us assume, conversely, that the functions xl

f . . . , xn satisfy (7); we 
shall then take x1 for y and show that y satisfies (5). Setting x1 = y in 
the first of the equations of (7), we obtain x2 = y. Substituting y for x2 

in the second equation of (7), we obtain x3 = y. Continuing this con
struction further, we arrive at the relations (6). Finally, substituting in 



4] REDUCTION TO A NORMAL SYSTEM 29 

the last of the equations of system (7) each function x1, . . . , x11 by those 
of (6), we obtain equation (5) for y. 

Since the function/is defined in Γ, the right-hand sides of (7) are also de
fined in Γ under the condition that the change of coordinates obeys (6). For 
system (7) the conditions of Theorem 2 are satisfied in Γ. Thus it is 
possible to select arbitrarily the initial values t0j xl, xl, . . . , x% in Γ. 
This set of initial values is transformed by (6) into a set of initial values 
i, 2/o, io, · · · , 2/on_1) f o r e q u a t ion (5). 

If (5) is linear, then (7) is also linear. From this follows the final part 
of (A), by Theorem 3. Thus proposition (A) has been proved. 

The method described in (A) makes it possible to reduce to a normal 
system any system of differential equations which is solved for the highest 
derivatives. In order not to encumber the presentation with formulas, 
we shall investigate in the following proposition (B) a fourth-order system 
consisting of two equations. 

(B) Let 
ü = f(t, u, ü, v, v), 
v = g(t, u, ύ, v, v) 

be a system of two second-order equations. Here t is an independent 
variable, and u and v are the unknown functions. We shall reduce (11) to a 
normal system by introducing new unknowns x1, x2, xB, x4 according to 
the formulas 

xl = u, x2 = u, x3 = v, x4 = v. 

By this substitution, (11) is transformed into the system 

x1 = x2, 
X = J ( i , X j X , X , X ) , 
•3 __ 4 ^ 1 ^ 

x4 = g{t, x1, x2, x3, x4). 

If it is assumed that the functions / and g, on the right-hand sides of (11), 
are defined in a domain Γ of a five-dimensional space, where t, u, ΐι, ν, ν are 
the coordinates of a point, these functions being continuous and having con
tinuous first-order partial derivatives with respect to u, u, v, v, then the 
system (12) is normal and satisfies the conditions of Theorem 2 in Γ. 
From this it easily follows that for any point t0, u0, ύ0, ν0, v0 of Γ there 
exists a solution u = φ(ί), ν = φ(ί) of (11) which satisfies the initial 
conditions 

<p(t0) == u0, <p(t0) = ύ0, 
ΦΜ = VQ, φψο) = v0. 
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In addition, all solutions with identical initial conditions coincide on the 
common part of their intervals of existence. 

The proof of (B) is carried out in the same manner as the proof of (A). 
If one nth-order equation, given in the form 

F(t, y,y,..., y{n)) = 0, (13) 

is not solved for the highest-order derivative yin) of the unknown, then 
the question immediately arises of its solvability with respect to y{n\ We 
may assume that this question does not relate to the field of differential 
equations, but rather to the theory of functions. There arise, however, 
some questions, which are investigated in the theory of differential equa
tions, of the following character. Let us assume that equation (13) is 
quadratic with respect to the variable y(n). Then it defines a two-valued 
function yin) of the remaining variables. Where the two values are really 
distinct, we actually arrive at two different equations of the form (5), but 
where the two values of variable y(n) defined by equation (13) coincide, 
splitting them into two equations of form (5) is impossible, and it is neces
sary to study equation (13). The study of such equations leads to the 
concept of singular solutions of the differential equation and to the study 
of equations on surfaces. These questions, however, will not be studied 
in this book. 

EXAMPLES 

1. We shall solve the equation 

x + ω2χ = 0, ω = const. (14) 

By direct inspection we see that the function 

x = r cos (ωί + a), r > 0, (15) 

where r and a are constant, satisfies this equation. We shall show that (15) 
contains the set of all solutions. Let x = <p(t) be any solution of (14). 
By Theorem 3 [see the end of (A)], it may be assumed that the solution 
x = <p{t) is defined for all values of t. Let us set φ(0) = χ0, Φ(0) = £0· 
We see easily that r and a can be selected in such a way that r cos a = x0, 
—rco sin a = x0 hold. 

If these equalities are satisfied, then the solutions (15) and φ(ί) have 
identical initial values 0, x0, xo, and therefore coincide [see (A)]. 

The function (15) describes the harmonic oscillatory process for the 
harmonic oscillator. The positive constant r is called the amplitude of the 
oscillation (15), and a is its initial phase or simply its phase. Equation (14) 
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FIGURE 10 

is called the equation of the harmonic oscillator. The number ω is called 
the frequency of oscillation, although in reality the number of oscillations 
per second is determined by the formula 

v = ω 
2ΤΓ' 

2. We shall investigate the motion of a point p with mass m along 
a horizontal straight line I under the action of a force F which is attracting 
it toward the point 0 on the same straight line and is proportional to the 
distance between the points p and 0 . To form the equation of motion of 
the point p we shall take a coordinate system with the point 0 as origin 
on the line I. The variable coordinate of the point p we shall designate by 
x = x(t). Then, by Newton's second law, the equation of motion of the 
point p will have the form 

mx = F -kx. 

This equation is usually written in the form 

mx + kx = 0. (16) 

Physically, the force F can be realized by a spring of some kind (Fig. 10). 
The number k is called the coefficient of elasticity of the spring. According 
to formula (15), the solution of (16) has the form 

x = r cos (£>+·)■ r > 0. 

Thus, the frequency of oscillation ω = y/k/m of the point p is determined 
by its mass m and by the elasticity k of the spring; it does not depend on 
the initial conditions. The amplitude of the oscillation r and its initial 
phase a depend on the initial conditions, i.e., on the location x0 of the 
point p and on its velocity x0 at the instant t = 0. 

3. We shall formulate and give an approximate solution of the equation 
of the mathematical pendulum. The mathematical pendulum is represented 
by a point p of mass m which under the influence of gravity moves on the 
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K 

FIGURE 11 

circumference K of radius I in the vertical plane. The quantity I is called 
the length of the pendulum. On the circumference K we shall introduce 
an angular coordinate by taking the lowest point 0 of the circumference 
as the origin of coordinates (Fig. 11). The variable coordinate of the point 
p we shall denote by φ = <p(t). The point p is subject to the gravitational 
force P = mg, directed vertically downward. The component of this 
force along the normal to the circumference is balanced by the normal 
component of the inertial force (i.e., centrifugal force with opposite sign) 
and by the reaction of the connection (of the circumference or of the thread 
which forces the point to move along the circumference); the component 
along the tangent to the circumference at point p in the direction of 
increase of the angle φ is equal to — mg sin φ. Thus the equation of motion 
of the point p has the form πιΐφ = —mg sin <p, or 

lip + g sin φ = 0. (17) 

This equation is nonlinear and its solution presents great difficulties. 
If it is assumed that the coordinate φ of p is very close to zero during the 

motion, then in equation (17), φ may be substituted approximately for 
sin ψ and we obtain an "approximate" linear equation of the pendulum: 

Ιφ + g<P = 0. 

Its solution has the form [see (15)] 

φ = r COS Wf'+«)· 
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Thus the frequency of "small oscillations" of the pendulum is determined 
by the formula ω = \^gJ~L 

The frequency of oscillation of the solutions of equation (17) depends 
on the amplitude of the oscillations and decreases when the amplitude of 
the oscillations increases. 

The number v of small oscillations of a pendulum per second is deter
mined by the formula 

v = — = — J9-. 
For example, the length of a seconds pendulum, i.e., of a pendulum which 
performs one oscillation per second {v = 1), is determined by the formula 

I = - r ^ « 0.25 m. 
47Γ2 

5. Complex differential equations. Up to this point we have considered 
only real equations and their real solutions. In certain cases, however, as 
in the case of the solution of linear equations with constant coefficients, 
it is easier to first find complex solutions of the real equation and then to 
select from them the real solutions. To present this approach we must 
introduce the concepts of a complex function of a real variable and of a 
complex system of differential equations. 

(A) A complex function x(t) of a real variable t is said to be defined if, 
to each t on a certain interval ri < t < r2, there corresponds a complex 
number 

x(0 = <PV) + #(i), 
where <p(t) and ψ(ί) are real functions of the real variable t. The function 
<p(t) is called the real part of the complex function x(t) and function ψ(ί) is 
called its imaginary part. A complex function x(t) is said to be continuous if 
the functions <p(t) and φ(ί) are continuous. In exactly the same way, the 
complex function X(t) is called differentiable if the functions φ(1) and ψ(ί) 
are differentiable; the derivative x(t) of a complex function x(t) is defined 
by the formula 

x(t) = φ(ή + ίφ(ί). 

By direct inspection we see that the usual rules for differentiation of the 
sum, product, and quotient of two complex functions of a real variable are 
valid. 

(B) Let 
» = V(t, z \ . . . , *»), 3 = 1, · · · , n (1) 

be a normal system of differential equations. We assume that the functions 
hJ(t, z1, . . . , zn) on the right-hand sides of the equations are defined for 
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complex values of the variables z1, . . . , zn. We can confine ourselves, for 
example, to the case when these functions are polynomials in the variables 
zl, . . . , zn with coefficients which are real or complex continuous functions 
of a real variable t defined and continuous on the interval q\ < t < q2. 
Under these conditions, it is quite legitimate to pose the problem of finding 
complex solutions of system (1). The system 

* = Xy(0, i = 1, . . . , n, (2) 

of complex functions of a real variable t which are defined on some interval 
r i < t < r2 will be called a solution of (1) if substitution of the functions 
(2) for the variables zj leads to a system of identities in t on this interval. 
Since we are assuming that the right-hand sides of (1) are polynomials in 
z1, . . . , zn, they are defined for all values of these variables. Hence, the 
following existence and uniqueness theorem is valid for the system (1). 

Let 
i -1 „2 n 
Kb Ζθ, 2(b · · · J z0 

be an arbitrary system of initial values. Here zj, . . . , Zo are arbitrary 
complex numbers, and t0 is an arbitrary real number satisfying the condi
tion qi < t0 < #2- Then there exists a solution 

zj = xy(0, i = 1, . . . , n, 

of (1) which satisfies the initial conditions 

* % ) = *oi 3 = 1, · . . , n. 

Any two solutions with identical initial conditions coincide on the common 
part of their intervals of definition. 

If (1) is linear, i.e., if the polynomials h3 are of first degree, then for any 
initial values there exists a solution of (1) defined on the entire interval 
qi < t < q2. 

This existence and uniqueness theorem for a normal system of complex 
equations follows directly from Theorem 2 after every complex unknown 
function z3 is split into its real and imaginary parts. Indeed, let us assume 

z3 = x3 + iy3\ j = 1, . . . , n, (3) 

and make a change of the variables z3,j= 1, . . . , n, in system (1) accord
ing to formulas (3); then we shall have 

xj + Hjj = fj(t, x\ . . . , xn, y\ . · . , yn) 
+ igi(t,xl,...,*»,v1,...,yn), (4) 
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where fj and gj are real functions of real arguments which satisfy the 
relations 

/'"(«, x\ . . . , xn, y\ . . . , yn) + igj{t, x\ . . . , xn, y\ . . . , yn) 
= hi(t,x1 + iyl,...,xn + iun). 

From (4) it follows that 

xj = f>'(t, x1, . . . , xn, y1,..., 2/n), j = 1, · · · , n, 

yJ = gJ(t, x1,..., xn, y\ . . . , yn), j = Ι , . , . , η . 

Thus, in place of the normal system (1) of complex equations, we sub
stitute a normal system (5) of real variables. Since the right-hand sides 
of equations (1) are polynomials in z1, . . . , zn, the right-hand sides of (5) 
are polynomials in x1, . . . , xn, y1, . . . , yn. Since the coefficients of the 
polynomials hJ are continuous functions of t on the interval qi < t < q2, 
the coefficients of the polynomials/7 and g* are also continuous functions on 
the same interval. Thus, the right-hand sides of (5) are defined and satisfy 
the hypotheses of Theorem 2 in the domain Γ, which is defined by the 
single condition qi < t < q2 imposed on t, while the remaining variables 
x1, . . . , xn and yl, . . . , yn remain arbitrary. Setting 

ZQ = x3o + iyo, j = 1, · · · , n, 

xj(t) = <p\t) + itj(t), j = 1, . . . , n, 

we arrive at the problem of determining the solution of (5) under the 
initial conditions 

<PJ(h) = χΌ, j = 1, . . . , n, 

t3(to) = 2/o, j = 1, . . . , n. 

By Theorem 2, this solution exists, and any two solutions with identical 
initial conditions coincide on the common part of their intervals of defini
tion. 

If (1) is linear, then (5) is also linear, and for this reason the final part of 
proposition (B) follows from Theorem 3. 

It should be noted that system (1), whose right-hand sides consist of 
polynomials in zl, . . . , zn, can be real, i.e., the coefficients of these poly
nomials can be real functions of t. Nevertheless, we can also treat (1) as a 
complex system; namely, we can find its complex solutions, assuming that 
the functions z1, . . . , zn are complex. This approach to real equations is 
used because in certain cases it is easier to find the complex solutions of 
real equations than the real solutions. In this case the complex solutions of 
a real system of equations are found first, and then the real solutions are 
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selected from the complex solutions; i.e., only those solutions are con
sidered whose imaginary part vanishes. Linear equations with constant 
coefficients will be solved later in exactly this way. 

Just as in the real case, we can reduce quite general systems of differ
ential equations to normal systems in the complex case. Thus in the com
plex case we have propositions analogous to propositions (A) and (B) of §4. 
Here we shall formulate only the existence theorems for an nth-order 
differential equation. 

(C) Let 
z(n) = f(t, z,z,..., * (»-») (6) 

be an nth-order equation whose right-hand side is a polynomial in the 
variables 2, 2, . . . , z ( n - 1 ) and whose coefficients are continuous real or 
complex functions of t defined on the interval qi < t < q2. If to, 20, 
z0, . . . , 4 η _ 1 ) are now arbitrary initial values, where z0, z0, . . . , Zon_1) are 
arbitrary complex numbers, and if t0 is a real number satisfying q\ < 
to < #2, then there exists a solution z = φ(ϊ) of equation (6) which satisfies 
the initial conditions 

<p(t0) = *o, 4>(h) = io, · · · , *(n-1}(«o) = *(οη-1}. 

Any two solutions with identical initial conditions coincide on the common 
part of their intervals of definition. If (6) is linear, i.e., if the polynomial 
/ is of the first degree, then for arbitrary initial values there exists a solu
tion defined on the entire interval qi < t < q2. 

In §7 and below, the complex function ext of the real variable t, where λ is 
a complex number, will play an important role. We shall define this func
tion here and prove some of its properties. 

(D) Let w = u + iv be an arbitrary complex number; let us assume that 

ew = eu (cosy + isini;). (7) 

It is easy to see that the relation ew = ew holds. Below we shall prove 
the formula 

ewie
w* = ewi+wK (8) 

The well-known Euler formulas follow directly from (7): 

iv 1 Λ—iv iv n—iv 
e -\- e . e — e COS V = τζ 9 S in V 2 2f 

Let λ = μ + iv be a complex number. By (7) we have 
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We shall show that for complex values of λ the following differentiation 
formula is valid 

which is well known for real values of the parameter λ. 
Formula (7), taken here as the definition of the function ew of the com

plex variable w, can be proved if the function ew is defined by the series 

e = ! + «, + _ + _ + . . . + _ + .... 
We shall, however, assume that the function ew is defined by (7). 

We shall prove formula (8). Setting 

Wi = Ui + ivly w2 = u2 + iv2 
yields 

e
wiew* = eUl (cos V\ + i sin vi)eu* (cos v2 + i sin v2) 

= eui+u* (cos (ΌΙ + v2) + is in (vx + v2)) = ewi+w*. 

We shall now prove formula (9). We shall consider first the case of a pure 
imaginary number λ = iv. We have 

-T: etvt = -j2 (cos vt + i sin vt) = —v sin vt + iv cos vt at at 
= iv (cos vt + i sin *>i) = ivetvt. 

Further, for an arbitrary λ = μ + t>, by the formula for the differentia
tion of a product, we have 

d \t d ,ut 

= μβμίβίη + iv^eivt = (μ + tV)^ i + < r i = Xe: λί 

EXAMPLES 

1. We shall investigate the complex equation 

z = λζ, (10) 

where z = x + iy is a complex unknown function of a real variable 2, and 
λ = μ + iv is a complex number. From (9) it follows that 

z = ceu (11) 

is a solution of equation (10) for an arbitrary complex constant c. We 
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shall show that formula (11) contains the set of all solutions. For this, as 
in Example 1 of §1, it would be possible to use the uniqueness theorem, 
but here we shall use Theorem 3 to show how it can be used to simplify 
somewhat the calculations. In this case these simplifications are not 
particularly significant, but later an analogous method can give more 
substantial results. Thus, let z = x(t) be an arbitrary solution of (10). 
By virtue of Theorem 3 [see the last part of proposition (C)], we may 
assume that this solution is defined for all values of t. Setting x(0) = z0, 
we see that the solution z = X(t) has as its initial values the numbers 0 
and ZQ. It is clear that the solution 

z = zQeu, 

which is obtained from (11) by setting c = z0) has the same initial values. 
If it is assumed that c = re101, where r > 0 and a are real numbers, then 
(11) may be written in the form 

z = reu+ia. (12) 

We now split equation (10) into its real and imaginary parts. We have 

x + iy = (μ + iv)(x + iy) = (μχ — vy) + i(vx + μι/) 
or 

x = μχ — vy, y = vx + ßy. (13) 

Thus the system (13) of two real equations is equivalent to one complex 
equation (10), and therefore an arbitrary solution x = <p(t), y = \(/(t) of 
(13) is related to the arbitrary solution (12) of (10) by the relation 

φ(ή + τψ(ί) = reu+ia = r{fl cos (vt + a) + i sin {vt + a)), 

whence we obtain 

x = <p(t) = reßt cos (vt + a), y = ψ(ί) = τβμί sin {vt + a). (14) 

Thus, by using complex functions and equations, we have found the 
solution (14) of the system (13) of real equations. 

2. We shall present one more example of splitting a complex equation 
into two real ones. Let 

z = z -\- iz 

be a complex equation, where z = x + iy is a complex unknown function 
of the real variable t. We have 

x -f iy = (x + iy)2 + i(x + iy) = (z2 — y2 — y) + i(2xy + x) 

and therefore 
x = x* — 2Γ — y, y = 2xy + x. 
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6. Some properties of linear differential equations. A system of dif
ferential equations is called linear if all unknown functions and their 
derivatives, taken together, enter the equations of the system linearly. 
Thus the system of linear equations of the most general type can be 
written in the form 

Σ ^*(0(zy)(fc) + bi(t) = 0, i = 1, . . ., n. (1) 

Here x1, . . . , xn are unknown functions of the independent variable t} and 
the coefficients aak(t) and the free terms 6»(<) of the equations are functions 
of t. If all free terms of (1) are identically zero, then the system is called 
homogeneous. To each linear system corresponds a homogeneous linear 
system obtained from it by discarding the free terms. Thus to the linear 
system (1) corresponds the homogeneous linear system 

E^W(^ ' ) ( f c ) = 0> f = Ι , - . - ,η . (2) 

We shall note several immediate properties of linear systems. In formu
lating these, it will be assumed that all coefficients and free terms of the 
linear system are defined and continuous on the interval qi < t < q2; 
all solutions under consideration will be assumed to be defined on the 
entire interval q\ < t < q2. 

(A) If y% = φι(ή and yl = ^l(t)) i = 1, . . . , n are two solutions of the 
linear homogeneous system (2), and if cx and c2 are two arbitrary numbers, 
then the system of functions 

V* = civ\t) + c2y(t), i = 1, . . . , n, 

is also a solution of the homogeneous system (2). An analogous assertion 
is also valid for three or more solutions of (2). 

(B) If xl = φ\ί) and xl = x\t)y i = 1, . . . , n, are two solutions of 
(1), then the system of functions 

if = x\t) - **(*), i = 1, . . . , n, 

is a solution of the system of homogeneous equations (2). Further, if 
yl = <pl(i), i = 1, . . . , n, is a solution of the homogeneous system (2), 
and xl = \l/l(t), i = 1, . . . , n, is a solution of (1), then the system of 
functions 

xl = <Pl(t) + ψ\£), i = 1, . . . , n, 

is also a solution of (1). 
(C) We shall assume that the free terms of (1) may be written in the 

form of sums 
b\t) = aa(t) + ßdi(t), i = 1, . . . , n. 
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We shall consider along with system (1) two systems of equations: 

Σ a<y*(0(^)(fc) + cut) = 0, i = 1, . . . , n, (3) 

Σ α**(0(*0(*} + d<(0 = 0, t = l , . . . , n . (4) 

If a;* = ^*(0, t = 1, . . . , n, is a solution of (3) and xi = x*(0, ί = 1, 
. . . , n, is a solution of (4), then the system of functions 

x{ = αφ\0 + ßx\t), i = 1, . . . , n, 

is a solution of (1). 



CHAPTER 2 

LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS 

Systems of ordinary differential equations with constant coefficients 
constitute a large and important class of ordinary differential equations 
which may be solved completely with the aid of elementary functions. 
In view of the fact that the solution of these equations does not, in prin
ciple, present any great difficulties, they are often considered to be of no 
great interest for theory, and in textbooks they are usually relegated to the 
position of simple exercises appended to the general theory of linear equa
tions. Linear equations with constant coefficients, nevertheless, have 
numerous engineering applications, since the performance of many tech
nical devices is described in an adequate manner by these equations. I t is 
precisely the engineering applications which bring forward a series of new 
problems of a theoretical nature in the theory of linear equations with 
constant coefficients. To the solution of these theoretical problems many 
studies of an applied nature have been devoted, and some of these are 
reflected in the present chapter. Thus in this chapter we employ the 
operational notation which is customary in engineering practice and which 
is very convenient for the solution of systems of equations by the method 
of elimination. The problem of the stability of solutions of systems of 
linear equations, which is very important in the theory of automatic 
control, is studied. Further, we shall develop the so-called method of 
complex amplitude, which is a convenient means for determining particular 
steady-state solutions and is widely applied in electrical engineering. 

Rather than confining ourselves to the solution of the purely mathemati
cal problems arising from applications, we shall present here in very short 
dogmatic form an exposition of the theory of electrical circuits. The design 
of electrical circuits gives a good and important, from the engineering 
point of view, illustration of the mathematical methods developed in this 
chapter. 

In addition, the present chapter includes a study of the phase plane of 
second-order linear systems, which is preceded by a very elementary 
study of phase spaces of (generally speaking, nonlinear) autonomous 
systems. Phase spaces of autonomous systems also find important appli
cations in engineering. 

Because of what has been said above, the chapter on linear equations 
with constant coefficients occupies a considerably larger place in this book 
than is customary in textbooks on the theory of ordinary differential 
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equations. The presentation of all the material of the present chapter is 
very elementary, with the sole exception of §14, where matrices in Jordan 
form are used. Everything done with the aid of matrices in Jordan form 
may be skipped, as has been indicated in detail in §14, since it is not used 
later in the book. 

7. The linear homogeneous equation with constant coefficients. Case 
of simple roots. In this section and in the following we shall solve the 
linear homogeneous nth-order equation with constant coefficients, i.e., 
the equation 

z{n) + axz{n-l) + · · · + αη_χέ + anz = 0, (1) 

where z is an unknown function of the independent variable t, and the 
coefficients a,\, . . . , an are constants (real or complex). First, we shall 
find all complex solutions of this equation, and then (in the case where 
coefficients αχ, . . . , an are real) separate from them the real solutions. 
Equation (1) can be written in the form 

*<»> = -aiz{n~l) an_xz - anz, (2) 

so that the existence and uniqueness theorem can be applied to it [see 
proposition (C), §5]. Later on, we shall use only the uniqueness, since 
solutions of equation (2) will be found explicitly, and their existence will 
be established by this fact; uniqueness itself will be used to prove that all 
the solutions have been found. 

In engineering applications of ordinary differential equations with con
stant coefficients, an important role is played by the operational calculus. 
We shall use here the symbolic (or operational) notation which is the basis 
of the operational calculus. The essence of this notation consists of the 
fact that the derivative of an arbitrary function z = z(t) with respect to 
the time t is designated not by (d/dt)z, but by pz, so that the letter p placed 
to the left of the function is a differentiation symbol with respect to t. If 
we apply to the differentiation symbol p certain algebraic operations, we 
are led to the notation 

By using this notation, we can write 

a0z(n) + axz{n-l) + h an_x£ + anz 
= a0pnz + aipn~lz + · · · + an-ipz + anz. 

If in the right-hand side of the last equation we take the function z out of 
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the parentheses, we obtain the equality 

αΌζη + α ι ζ ( η ~ υ + h an-iz + anz 
= («oPn + a>\Vn~l H h «n-iP + On)z. 

Thus we come to a formal definition. 
(A) Let 

L(p) = a0pn + αχρ71"1 + \- a>n-Xp + an 

be an arbitrary polynomial with constant coefficients (real or complex) 
with respect to the symbol p, and let z be a certain real or complex function 
of a real variable t. We set 

L{p)z = a0z(n) + a^ ( n - 1 } + - · · + an-Xz + anz. (3) 

If L(p) and M(p) are two arbitrary polynomials in the symbol p (or, as 
we say, in the differentiation operator p) and 2, z\, z2 are functions of t, then 
we have the identities 

L(p)(zi + z2) = L(p)zi + L(p)z2, 
{L{p) + M (p))z = L(p)z + M(p)z, 

L(p)(M(p)z) = (L(p)M(p))*. 

By the notation introduced, equation (1) can be written in the form 

L(p)z = 0, (4) 

where 
L(p) = pn + αχρ71"1 Η \- an^p + an. 

(B) Let L(p) be an arbitrary polynomial with respect to the symbol p. 
Then 

L(p)eu = L(\)ext. (5) 

We shall prove formula (5). We have 

[see formula (9), §5]. From this it follows that pkeu = \kext. Hence 
formula (5) follows immediately [see (3)]. 

It follows directly from formula (5) that the function eu is a solution 
of equation (4) if and only if the number λ is a root of the polynomial 
L(p). The polynomial L(p) is called the characteristic polynomial of equa
tion (4). In the case when it has no multiple roots, the set of all solutions 
of (4) is described by the following theorem. 
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THEOREM 4. If the characteristic polynomial L(p) of the equation 

L(p)z = 0 (6) 

[see (1) and (4)] has no multiple roots, if its roots are 

λχ, λ2, · · . , λη, 

and if we set 

zi = βλιί, 22 = e^\ . . . , zn = eV, (7) 

then for any complex constants c1, c2, . . . , cn, the function 

z = clzl + c2z2 H h cnzn (8) 

is the solution of equation (6). This solution is the general solution in 
the sense that every solution of equation (6) can be obtained from (8) 
by proper choice of the constants c1, c2, . . . , cn. Here the constants 
c1, c2 , . . . , cn (which are called integration constants) are defined uniquely 
for every given solution z. 

Thus the functions (7) constitute the so-called fundamental system of 
solutions of (6) [see §18, (C)]. 

We note that the functions (7) are defined over the entire axis — GO < 
t < +oo. 

Proof. It follows from (5) that every function of the system (7) is a 
solution of (6), and, because (6) is linear and homogeneous, it follows 
[see §6, (A)] that, for any complex constants c1, c2, . . . , cn, (8) gives the 
solution of (6). We shall show that if 2* = 2*(0 is an arbitrary solution of 
(6), then it can be written in the form (8). By proposition (C), §5, we can 
consider the solution 2* to be defined on the entire axis — GO < t < co. 
Let us set 

«„(0) = *o, **(0) = io, · · · , 4n_1)(0) = *(<Τυ. 
We shall now show that constants c1, c2, . . . , cn can be chosen in such a 
way that the solution z(t), defined by (8), satisfies the same initial conditions 

z(0) = z0, i(0) = i0, · · · , β(η-1)(0) = « Γ 1 . (9) 

Substituting the function z from (8) into the equations (9), we obtain 

cVis)(0) + · · · + cnz(
n
s\0) = z(os); s = 0, 1, . . . , n - 1. (10) 

The relations (10) represent a system of equations in the unknowns 
c1, c2, . . . , cn. In order that (10) may be solved, it is sufficient that the 



7] LINEAR EQUATION, CASE OF SIMPLE ROOTS 45 

determinant of the matrix 

*i(0) 

ii(0) 

2i(0) 

zT~2\0) 

ea(0) 

*2(0) 

22(0) 

2
(
2"-2)(0) 

2(
2

n_1)(0) 

z„(0) 

i»(0) 

2„(0) 

*ir2)(o) 
.(»-i)(0)j 

(11) 

does not vanish. 
It is immediately evident that the matrix (11) has the form 

f 1 

λϊ 
I \n—1 

λ| 

\n — 1 λ2 

1 
λΛ 

λ2 

Λ η 

>π—1 
Λ η 

and therefore its determinant (Vandermonde's determinant) is different 
from zero because all the numbers Xi, X2, · · · , Xn are mutually distinct. 
However, we shall give another (direct) proof that the determinant of (11) 
is different from zero. Later this proof will also be extended to the case 
of multiple roots. 

If the determinant of matrix (11) were zero, then we could find a linear 
dependence between its rows. Let us assume that this linear dependence 
does exist. This means that there exist numbers i>n-i, bn-2, · · · , &o> not 
all zero, such that, if we multiply the rows of the matrix (11) by these 
numbers and add, we obtain a row of zeros. If we calculate the nth term 
of this zero row, we obtain 

&n-l*Jb(0) + &n-2%b(0) + · · ■ + &l4r2)(0) + b^"1^) = 0. (12) 

If we denote by M(p) the polynomial 

bop71"1 + blP
n-2 + · · · + 6n_2p + 6n-i, 

we may write (12) in the form 

M(p)zk\M = 0. 

By virtue of formulas (5) and (7), we thus obtain 

M(\k) = 0, 
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which is impossible, since the degree of M(p) does not exceed n — 1, so 
that it cannot have n distinct roots λχ,. . . , λ&,. . . , λη. This contradiction 
indicates that the determinant of (10) cannot be zero; consequently, the 
constants c1, c2, . . . , cn can be determined (and uniquely, moreover) so 
that the solutions z*(t) and z{t) satisfy identical initial conditions. For this 
choice (and only for this choice) of constants the solution (8) coincides 
with the given solution z*{t). Thus Theorem 4 is proved. 

If the coefficients of the polynomial L(p) in equation (6) are real, then 
we have the problem of separating the real solutions from the set (8) of all 
complex solutions. The solution of this problem rests upon proposition 
(D), in the formulation and proof of which we shall use vector notation. 
We shall recall that notation here. 

(C) We shall call the sequence consisting of n numbers, 

u = (u\ u2,..., un), 

a vector of an n-dimensional space. Here u is the vector and the numbers 
w1, u2, . . . , un are called its coordinates (or components). We shall always 
designate vectors by boldface letters. If the coordinates of the vector are 
real numbers, then the vector is called real) if its coordinates are complex, 
then the vector itself is considered complex. The vector u, which is the 
complex conjugate of the vector u, is defined by the equality 

u = (ti1, u2, . . . , un). 

It is clear that vector u is real if and only if 

u = u. 

The product of the vector u = (w1, u2, . . . , un) with a real or complex 
number a is defined by the formula 

«U = Ua = (ecu1, au2, . . . , aun). 

The sum of the vectors 

u = (u1, u2, . . . , un) and v = (v\ v2, . . . , vn) 

is defined by the formula 

u + v = (u1 + v\ u2 + v2, . . . , un + vn). 

The vector 0, all of whose coordinates are zero, is called the null vector. 
Let 

Ui, U2, . . . , Ur 
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be a finite system of vectors. The relation 

a^Ui + a2U2 + * ' · + 0LrUr = 0, 

where not all of a1, a2, . . . , ar are zero, is called a linear dependence 
among the vectors Ui, u2, . . . , ur. If the vectors are not linearly depend
ent, then they are called linearly independent. Let 

Uy = (t*y, u2
h . . . , wy), j = 1, . . . , r. 

The numbers u) form a matrix (w}); i = 1, . . . , n; y = 1, . . . , r. If we 
assume that the upper index i designates the number of the row and the 
lower index j the number of the column, then the matrix (u)) has height n 
and width r. Thus we have a correspondence between vector a,· in the 
matrix (wj) and the jth column, which consists of the coordinates of this 
vector. Hence, it is clear that to a linear dependence among the vectors 
Ui, U2, . . . , u r corresponds a linear dependence between the columns of 
the matrix (ιφ. Whenever r = n, the matrix (u)) is a square matrix, 
and the vectors Ui, u2, . . . , un are linearly independent if and only if the 
determinant |u£| of this matrix is not zero. 

(D) Let 
zx, z2, . . . , zn (13) 

be a system of n linearly independent complex vectors in an n-dimensional 
space. Let us assume that (13) also contains the conjugate of every vector 
in (13). Under these assumptions, the vector z, defined by the formula 

z = c!zi + · ■ · + cnzny (14) 

is real if and only if the coefficients of all pairs of conjugate vectors are 
conjugate and the coefficients of all real vectors are real. 

Let us prove this. To be definite, we shall assume that the relations 

Zl = Z 2 , . . . , Z 2 fc_ l = Z2fc, 

zy = zy; j = 2k+ 1,... 9n 

are satisfied. Then according to formula (14) the vector z has the form 

z = clzx + c2z2 + h c2k~lz2k-\ + c2kz2k 

+ c2k+lz2k+l + · ■ - + cnzn, (15) 

while the vector z has the form 

z = c2
Z l + Zxz2 + . . . + c2kz2k_x + c2k^z2k 

+ e ^ z ^ + i + · · · + cnzn. (16) 
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If 

C1 = C2, . . . , C 2 *" 1 = C2\ C2k+1 = C2k+\ . . . , Cn = Cn, (17) 

then it follows from (15) and (16) that z = z, i.e., the vector z is real. If, 
conversely, we assume that z is real, i.e., that z = z, then (15) and (16) 
give [by the linear independence of the vectors (13)] the system of rela
tions (17). Thus, proposition (D) is proved. 

Proposition (E) below presents a method of separating real solutions 
from the set of all complex solutions of equation (6) in the case that the 
coefficients of the polynomial L(p) are real. 

(E) Let us assume that the coefficients of L(p) are real; then to every 
complex root λ of L(p) corresponds a conjugate root λ. The solutions eu 

and eu of equation (6) are conjugate to each other [see §5, (D)]. If the 
root λ is real, then the solution ext is real. Thus, corresponding to every 
solution of the fundamental system (7), there is also a complex conjugate 
solution. For the solution (8) of (6) to be real, it is necessary and sufficient 
that the coefficients of pairs of complex conjugate solutions be conjugate 
and the coefficients of real solutions be real. 

For proof let us denote by z& the vector with coordinates 

{«*«>), i*(0) , . . . , 4n-2)(0), 4n-X)(0)} 

and by z the vector with coordinates {z0, έ0, . . . , £on_1)}· Then (10) 
takes the form 

C*Zi + C2Z2 + h CnZn = Z. 

The vectors Ζχ, z2, . . . , zn are linearly independent, since the determinant 
of (11) is not zero. Thus, the necessity of the condition presented in (E) 
follows directly from (D). On the other hand, if this condition is fulfilled, 
then the solution (8) is real. Indeed, if λχ and λ2 are two complex con
jugate roots, and c1 and c2 are two complex conjugate constants, then 
c V 1 ' and c2eXai are complex conjugate functions and, consequently, their 
sum is real. Thus proposition (E) is proved. 

EXAMPLES 

1. We shall find all complex solutions of the equation 

*(3) - 3z + 92 + lSz = 0, 

which can be written in the form (6), where 

L(p) = p3 - Sp2 + 9p + 13. 

By direct inspection, we see that p = —1 is a root of the characteristic 
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polynomial L(p). Factoring L(p) by p + 1, we obtain 

L(p) = (p + \){p2 - 4p + 13), 

from which we obtain two more roots, 2 ± Si. Thus the roots of L{p) are 
the numbers 

λχ = 2 + 3i, λ2 = 2 - 3i, λ3 = - 1 . 

By Theorem 4 the general complex solution of the equation under con
sideration has the form 

z = cV2 + 8 i ) l + c2e(2~si)t + ch~\ 

In Examples 2 and 3 below we give two general rules for determining 
the real solutions. These rules follow directly from proposition (E). 

2. We shall assume that the fundamental system of solutions (7) satisfies 
the conditions 

Z\ = Z2, . · · , Z2k-1 = *2kj 22fc+l = Z2k+l, · · · , Zn = Zn, (18) 

and set 
Zi = %i + iyu · · · > z2k-i = xjc + iyky 

where xx, . . . , xu, y\, . . . , Vk are real functions. We shall further assume 
that the numbers c1, c2, . . . , c11 satisfy (17), and set 

c1 = Ua1 - ib1), . . . , c2k~l = U°>k ~ ibk), 

where a1, . . . , ak, ft1, . . . , bk are real numbers. With this notation the 
general real solution of (6) may be written in the form 

z = a 1 ^ + blyx -\ \- akxk + bkyk + c2k+lz2k+i H h cnznj 

where 
a1, 61 , . . . , ak, bk, c2k+\ ...,cn 

are arbitrary real numbers. Thus, if for every pair of conjugate complex 
solutions we substitute their real and imaginary parts in the fundamental 
system (7), we shall obtain a fundamental system of real solutions. 

3. Again we shall assume that the solutions (7) satisfy (18); let us set 

λι = Mi + «Ί , . . . , X2fc_i = ßk + ivk-

Under the hypothesis that c1, c2, . . . , cn satisfy (17), we may set 

c1 = iPieiaS · . · , c2k~l = ipkeiaK 
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In this notation every real solution z may be written in the form: 

z = P l ^ι* cos (vxt + α ι Η h pk e^ cos ( ^ + ctk) 
+ c2k+l exa*+i* + h c n ex«'. 

Here pi, . . . , p*, αχ, . . . , aÄ, c2*+1, . . . , cn are arbitrary real constants. 
From the last expression it is evident that every imaginary part Vj ^ 0 
of the root Xy gives the solution an oscillatory character with a frequency 
Vj, while every real part μ,· of the root Xy causes the solution either to grow 
(if ßj > 0) or become smaller (if μ, < 0). 

4. By using the results of Examples 2 and 3, we can write all the real 
solutions of the equation investigated in Example 1 in the following 
two forms: 

z = a
le2t cos 3t + ble2t sin 3t + ch~\ 

z = pie
2t cos (3* + αι) + cse~l. 

8. The linear homogeneous equation with constant coefficients. Case 
of multiple roots. If the characteristic polynomial 

L(p) = pn + α ι ρ η _ 1 Η h a n _ip + an 

of the equation 
L(p)z = 0 (1) 

[see §7, (A)] has multiple roots, then by functions of the form eu it is not 
possible to find n distinct solutions of equation (1). To find solutions of 
another form in this case, we can use the following heuristic reasoning. 
Let λχ and λ2 be two distinct real roots of the characteristic polynomial 
L(p); then the function (eXl* — βλ2*)/(λι — λ2) is a solution of (1). If we 
now assume that with a change in the coefficients of L(p) the number λ2 

tends to λχ, then this solution tends (in the limit) to the function te^l\ 
which may naturally be assumed to be a solution of (1) whenever λχ is a 
double root of the polynomial L(p). Similarly, we arrive at the conjecture 
that, if λ is a fc-tuple root of the characteristic polynomial L(p), then all 
the functions 

ext, teu, . . . , **" V« 

are solutions of (1). Extending this conjecture to the case of complex 
multiple roots, we come to the question of the validity of the following 
theorem (which is a generalization of Theorem 4): 

THEOREM 5. Let 
L(p)z = 0 (2) 

be a linear nth-order homogeneous equation with constant coefficients. 
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Further, let λχ, . . . , \m be the set of all mutually distinct roots of the 
characteristic polynomial L(p) of equation (2), the root Xy having the 
multiplicity fcy, so that fci + k2 + · · · + km = n. If we set 

zx = e V , z2 = te^\ . . . , zki = * * i ~ W ; 

zh+1 = eV, zki+2 = te^\ . . . , zki+k2 = * * » - W ; ( 3 ) 

. . . , zn = tk^le^\ 

then all the functions (3) are solutions of (2), so that for any complex 
constants c1, c2, . . . , cn, the function 

z = c1*! + · · · + cnzn (4) 

is also a solution of (2). This solution is the general solution in the 
sense that every solution of (2) can be obtained from (4) by a proper 
choice of the constants c1, . . . , cn, where the constants c1, . . . , cn are 
defined uniquely for every given solution z. 

Thus the functions (3) constitute the so-called fundamental system of 
solutions [see §18, (C)] of equation (2). We note that the functions (3) 
are defined on the entire axis — oo < t < +oo. 

We shall preface the proof of Theorem 5 with a proof of the so-called 
shift formula. 

(A) Let L(p) be an arbitrary polynomial, X any complex number, and 
f(t) a function which can be differentiated an arbitrary and sufficient 
number of times. Then the following important formula is valid: 

L(p)(e"f(t)) = eM-L(p + \)f(t). (5) 

We shall prove formula (5), but first we shall verify it for the case 
L(p) = p. We have 

p(e"f(t)) = \e»f(t) + 6»/(0 = e"(p + \)f(t). 

Now it is easy to verify formula (5) for any first-degree polynomial L(p) = 
ap + b. We have 

(op + 6)(eXi/(0) = ap(e"f(t)) + be"f(t) 
= ae"(p + λ)/(0 + be»f(t) = ext[a(p + X) + b]f(t). 

In the general case, we shall carry out the proof of formula (5) inductively 
with respect to the degree n of polynomial L(p). As we have seen, the 
formula is valid for n = 1. Let us assume that it is also valid for a poly-
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nomial of degree n — 1, n > 2, and prove it for a polynomial L(p) of 
degree n. To do this we shall factor the nth-degree polynomial L(p) into 
two factors, L(p) = Li(p) · L2(p), where Lx(p) is of the first degree and 
L2(p) is of degree n — 1. Since formula (5) is correct for each of the 
polynomials Li(p) and L2(p), we have [see §7, (A)] 

L(p)(e"f(t)) = L1(p)[L2(p)(e^/(0)] = L1(p)(eXiL2(p + λ)/(ί)) 

= βλίΖα(ρ + X)L2(p + λ)/(0 = e"L(p + X)/(Q. 

Thus formula (5) is proved. 
We shall now prove proposition (B), which includes Theorem 5 almost 

entirely. 
(B) Let L(p) be an arbitrary polynomial in the symbol p, and let the 

function cor(0 of the real variable t be defined by the formula 

ωΓ(0 = L(p)treu, 

where λ is a complex number. We find that, if λ is a fc-tuple root of L(p), 
then the functions ω0(0> · · · > o*k-i(t) are identically zero. On the other 
hand, we find that, if the functions ω0(ί)) . . . , ω&_ι(0 equal zero for even 
one value t = Zo> i-e., if the equalities 

ωο(ίο) = «i(<o) = · · · = ωΑ_ι(ίο) = 0 (6) 

are valid, then λ is a root of L(p) of multiplicity not less than k. 
Let us prove proposition (B). By the shift formula [see (5)] we have 

ωΓ«) = extL{p + λ)Γ. (7) 

Let us assume first that λ is a /c-tuple root of L(p), i.e., that 

Up) = M(p)(p - \)\ 

If we replace p by p + λ in this identity, we obtain 

L(p + \) = M(p + \)pk. (8) 

From formulas (7) and (8) we obtain 

«r(0 = euM{p + λ ) (ρ¥) - 0 for r = 0, 1, . . . , k - 1, 

since pktr = 0 for r < k. Thus the first part of proposition (B) is proved. 
Let us now assume that (6) holds. If we expand L(p + λ) into powers 

of p, we obtain 

Up + λ) = b0 + 6ip + · · · + &n-lPn _ 1 + fen?". (9) 
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From (7) and (9) we obtain 

ω0(*ο) = eXt°K 

which by virtue of (6) gives 

60 = 0. 

Let us now assume that the equalities 

fe0 = bi = · · · = &r-i = 0, r < k - 1, (10) 

are valid and prove that br = 0. By formulas (7), (9), and (10) we have 

ωΓ(ί0) = βλί°·Π6Γ. 

I t follows from this and formula (6) that 

br = 0. 

Thus bo = bi = - · · = bk-\ = 0, and the polynomial L(p -f- X) has the 
form 

L(p + λ) = bkp* + · · · + bnpn = (bk + · · · + bnpn-k)pk = Mtfäp*. 

Substituting p — λ for p in this identity we obtain 

L{p) = Μχ{ρ - λ) . (p - X)fc, 

which shows that λ is a root of the polynomial L(p) of multiplicity no 
less than k. Thus proposition (B) is proved. 

Proof of Theorem 5. From the first part of proposition (B) it follows 
directly that the functions (3), defined in the formulation of Theorem 5, 
are solutions of (2). We shall prove that they constitute the fundamental 
system of solutions. To prove this it is sufficient to show that by a proper 
choice of the constants c1, . . . , cn we can obtain from (4) an arbitrary 
solution z* of equation (2). We shall prove this (here, unlike our proof of 
Theorem 4, we shall not use Theorem 3). 

Let 2* be an arbitrary solution of equation (2) defined on the interval 
7*1 < t < r2, and let t0 be some point of this interval. Let us set 

2*(£o) = Zo> £*(£o) = to, · · · , z*n~ (to) — z§~ · 

We shall now seek constants c1, . . . , c11 such that a solution z of equation 
(2) defined by (4) will satisfy the same initial conditions as the given 
solution 2*. Then by the uniqueness theorem we shall have z = z* (on 
the interval r\ < t < r2) . To determine the constants c1, . . . , cn, we 
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have the system of equations 

cVie)«o) + cV2
e)(<0) + · · · + cnz^(t0) = *<„·>, s = 0, 1, . . . , n - 1. 

(11) 

In order that system (11) be solvable, it is sufficient that the determinant 
of the matrix 

Um-1}(*o) 4m"1}(io) . . . tf-'Kto)) 
be different from zero. We shall show that this determinant is not equal 
to zero. For this we shall show that the rows of (12) are linearly inde
pendent. Let us assume the contrary and let 6 n - i , bn-2, . . . , &o be con
stants, not all zero, by which the first, second, . . . , rows of the matrix 
are to be multiplied in order that their sum be zero. By writing the sum 
of the elements of the jth column, we obtain the equality 

hozf-l\to) + &l4n-2)(<o) + · · · + &n-2*i(*0) + &n-l*i(<0) = 0, 

which can be written in the form 

MWzjU-t, = 0, (13) 

where M{p) = 6 0 p n _ 1 + &iPn~2 H l· K-iP + K-v The equality 
(13) forj = 1, . . . , fci shows that λχ is a root of multiplicity at least fcx of 
the polynomial M(p) [see proposition (B)]. In exactly the same way 
the equality obtained for j = fci + 1, . . . , ki + k2 shows that λ2 is a 
root of multiplicity at least fc2 of the polynomial M(p). The set of all 
equalities (13) leads to the conclusion that (taking multiplicities into 
account) the polynomial M(p) has not less than n roots, but this is im
possible since its degree is no higher than n — 1. Thus the assumption 
that the determinant of (12) is equal to zero has led us to a contradiction; 
this means that (11) is solvable (and, moreover, uniquely) in terms of the 
unknowns 

c , c , . . . , c . 

Thus Theorem 5 is fully proved. 
We shall note one obvious corollary of Theorem 5. 
(C) Every solution z(t) of equation (2) can be written in the form 

*2(*o) Ζη(*θ) 

*Π*ο) · · . £\t0) (12) 

Z{t) = h(t)e^ + f2(t)e^ + · · · + fm(t)e^t 
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where/y(i) is a polynomial of degree not exceeding the number kj — 1, 
j = 1, . . . , m. Here the polynomials fi(t), . . . , fm(t) are defined uniquely 
by the solution z(t), since their coefficients are the integration constants 
cl,c2,. . . , cn which by Theorem 5 are defined uniquely by the solution z(t). 

If the coefficients of equation (2) are real, then the problem facing us is 
that of separating real solutions from the set of complex solutions of (2). 

(D) We shall assume that the coefficients of the characteristic poly
nomial L(p) of equation (2) are real. Let λ be a certain root of L(p) of 
multiplicity fc; then, for r = 0, 1, . . . , k — 1, the function feu is a solu
tion of (2). If the root λ is real, then the function feu is real; if λ is com
plex, then in addition to the solution treu there is also the complex con
jugate solution treu, since λ is also a root of multiplicity k of L(p). Thus 
whenever the fundamental system (3) admits a complex solution it admits 
the complex conjugate as a solution. In order that the solution (4) be real, 
it is necessary and sufficient that the coefficients of real solutions be real, 
and the coefficients of pairs of conjugate complex solutions be complex 
conjugate. 

The proof of proposition (D) is carried out in exactly the same way as 
the proof of proposition (E) of §7 on the basis of proposition (D) of §7. 

EXAMPLES 

1. We shall solve the equation 

z(5) + 3z(4) + 3z'" + z" = 0. 

This equation can be written in the form (2), where the characteristic 
polynomial L(p) has the form 

p5 + Sp4 + 3p3 + p2 = p2(p + l ) 3 . 

The numbers 
λι = 0, 
λ2 = - 1 

are roots of multiplicity kx = 2, k2 = 3, respectively, of this polynomial. 
Therefore by Theorem 5 the fundamental system of solutions of this 
equation has the form 

zi = 1, z2 = t, z3 = e~\ z4 = te~l, z5 = t2e~K 

The general solution is given by the formula 

z= (c1 + c2t) + (c3 + cH + c*t2)e-'. 
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2. Let us solve the equation 

2(4) + 22" + z = 0. 

The characteristic polynomial is L(p) = (p2 + l ) 2 ; the numbers λχ = ι, 
λ2 = —i are its two roots, and its general solution may be written in the 
form 

z = (c1 + cH)eil + (c3 + cH)e-u. 

The following two examples give the general rules for distinguishing 
real solutions stemming directly from proposition (D). Examples 3 and 4 
are completely analogous to Examples 2 and 3 of §7. 

3. In Example 2 of §7 the concrete form of the solution was not taken 
into account, and it was only assumed that the fundamental system of 
solutions consisted of mutually conjugate solutions and real solutions. By 
the same reasoning, therefore, in the case of multiple roots we have the 
following general rule: In the fundamental system (3) it is necessary that 
each pair of complex conjugate solutions be replaced by the real and 
imaginary parts of one of these solutions. The system of functions so 
obtained is the fundamental system of real solutions. 

4. Let 
treu, felt 

be two complex conjugate solutions of (3). In the case of a real solution 2, 
that part of the sum (4) corresponding to these solutions may be written 
in the form 

z = cfe(ll+ivH + mre(li-iv)t. 

If we set 
c = %peia, 

we shall have 
z = pfe"* cos (vt + a). (14) 

In this way it is possible to replace every pair of complex conjugate 
solutions appearing in (4) by a real function of the form (14) containing 
two arbitrary real constants p and a. Here again, as in Example 3 of §7, 
it is evident that if a root λ has a nonzero imaginary part v, the solution 
has an oscillatory character, and if the real part μ of λ is nonzero, then the 
solution either increases (for μ > 0) or decreases (for μ < 0). Finally, 
if the root λ is multiple, there appears an additional term tr, which causes 
a further increase of the solution; however, as t —> 00 in the case μ < 0, 
the increase of the solution caused by factor tr is considerably less than the 
decrease caused by factor βμ\ so that for μ < 0 (and for any order of 
multiplicity of the root) the solution tends to zero as t increases. 
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5. Using the results of Examples 3 and 4 we can write all real solutions 
of the equation considered in Example 2 in the following two forms: 

z = (a1 + a2t) cos t + (61 + b2t) sin t, 
z = pi cos (t + «i) + P2t cos (t + a2)· 

9. Stable polynomials. Let 
L(p)z = 0 (1) 

be a linear homogeneous equation with constant coefficients. The question 
of how the solutions of this equation behave as t —> +oo (whether they 
tend to zero, remain bounded, or increase without limit) plays a very 
important role in a whole series of applications of the theory of ordinary 
differential equations. In Examples 3 of §7 and 4 of §8 it has already been 
noted that this question of the behavior of solutions of equation (1) is 
related to the nature of the real parts of the roots of polynomial L(p). We 
shall now formulate this problem more precisely. 

(A) The polynomial L(p) is called stable if all its roots have negative 
real parts or, in geometrical terms, are located on the left-hand side of the 
imaginary axis in the complex plane. Let 

λ ; = ßj + i»j, 3 = 1, . . . , m 

denote all the roots of the polynomial L(p). If this polynomial is stable, 
there exists a positive number a such that 

Mi < —«, j = 1, · · · , m. (2) 

We shall show that in this case for every solution <p(t) of equation (1) a 
positive number M can be found such that 

|^(0 | < Me-at for t > 0. (3) 

This formula not only shows that every solution of equation (1) tends to 
zero as t —> oo, but also gives us an estimate of the rate of convergence 
to zero. 

We shall prove (3) first for an arbitrary fundamental solution z8, s = 
1, . . . , n, of equation 1 [see (3), §8]. We have 

z8 = fe ' , whence fe^+a)t. 

Since the number /xy + a is negative because of (2), the function ire(Mi+a)i 

tends to zero as t —» oo and therefore is bounded for / > 0. Thus we have 

l - ^ l < M8 for t > 0, 
\p—at\ ' 
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or, what is the same thing, 

\z8\ < M8e-at for t > 0. 
If now 

<p(t) = clzx + c2z2 H V cnzn 

is an arbitrary solution of equation (1), then for t > 0 we have 

\φ{1)\ < (\cl\ · Mt + \c2\ · M2 + . . · + \cn\ · Mn)e-*' = Me"«'. 

Thus the inequality (3) is proved. It should be noted that if even one 
of the roots Xy of L{p) has a positive real part μ^ > 0, then there exists a 
solution eV of equation (1) which increases without bound as t —» oo. 

Many studies by mathematicians have been devoted to an applicable 
formulation of stability conditions of polynomials. For second-degree 
polynomials the stability condition is derived directly from the solution 
of a quadratic equation [see (B)]. The stability problem for polynomials 
of an arbitrary degree n was solved in several different forms by the 
mathematicians Rauss and Hurwitz. The Rauss-Hurwitz conditions, 
however, are inconvenient for actual computation, and, therefore, the work 
on new formulations of stability conditions continues. Here, a proof of the 
Rauss-Hurwitz criterion for n = 3 will be presented, and the stability 
condition for an arbitrary degree n will be given in the Hurwitz form with
out proof. 

(B) A second-degree polynomial L(p) = p2 + ap + b with real 
coefficients a and b is stable if and only if its coefficients are positive. 

This assertion is easy to verify with the aid of the formula for the solu
tion of a quadratic equation. 

(C) If the polynomial L(p) = pn + aipn~1 + · · · + an with real 
coefficients is stable, then all its coefficients are positive. 

For the proof, we shall factor L(p) into its first- and second-degree fac
tors, i.e., into factors of the form p + c and p2 + ap + b. Since L(p) is 
stable, each of its factors in this form is also stable. For the stability of the 
factor p + c it is necessary that the number c be positive, and for the 
stability of the factor p2 + ap + b it is necessary that both a and b be 
positive. Since the coefficients of the factors are positive, it follows that the 
coefficients of the product are also positive. 

The following theorem gives a stability criterion for third-degree poly
nomials. 

THEOREM 6. The polynomial 

L(p) = a0p3 + axp2 + a2p + a3, a0> 0, 

with real coefficients is stable if and only if the numbers aiy a2, a3 are 
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positive and, in addition, the inequality 

a\ü2 > α>Φζ 

is satisfied. 

Proof. For the proof we shall examine the polynomial 

L(p) = ps + ap2 + bp + c; (4) 

the case of the general polynomial L(p) can be easily reduced to this. By 
proposition (C) it is sufficient for us to prove that the polynomial (4) with 
positive coefficients a, b, c is stable if and only if the inequality 

ab > c (5) 

is valid. In our proof we shall use the fact that the roots of the polynomial 
are continuous functions of its coefficients. 

First of all we shall determine those conditions for which the poly
nomial (4) has purely imaginary roots, in particular, the root p = 0, 
which must also be considered purely imaginary since it is located on the 
imaginary axis. We have 

L(p) = (p + a)(p2 + b) - ab + c. (6) 

If L(p) has the root 0, then c = 0, and this case is excluded by hypothesis, 
since c > 0. Let us assume that the number ico," where ω ^ 0, is a root 
of L(p). If it is further assumed that —ω2 + b is not zero, then the 
number (τω + α)(—ω2 + b) has a nonzero imaginary part and cannot 
cancel the real number — ab + c. Thus the number ΐω can be a root of 
the polynomial L(p) only when -co 2 + b = 0; in this case we have the 
equality 

L(iu>) = —ab + c = 0. 

Conversely, if ab = c, then by formula (6) the polynomial L(p) has purely 
imaginary roots p = ±i\/b. Thus L(p) (with positive coefficients) has 
purely imaginary roots if and only if ah = c. In particular, by a continuous 
change of the positive coefficients a, 6, c, a root of polynomial L(p) can 
intersect the imaginary axis only if the equality ab = c is satisfied. 

Let us assume that (5) is not satisfied. Then either ab = c or ab < c. 
In the first case, the polynomial L(p) has purely imaginary roots and, 
consequently, is nonstable. We shall show that in the second case, i.e., 
when the inequality 

ab < c, (7) 

is satisfied, polynomial L(p) is also nonstable. We shall vary the coefficients 
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a and b continuously, keeping them positive in such a way that they tend 
to zero without violating inequality (7). During this change no root will 
pass from one side of the imaginary axis to the other, and consequently 
the property of stability or nonstability of the polynomial remains in
variant. When a = b = 0, we obtain the polynomial p3 + c, whose 
roots \/c (cos (7T/3) rb i sin (π/3)) are located on the right-hand side of 
the imaginary axis. Since the roots depend continuously on the coefficients, 
the nonstability (that is, the presence of roots to the right of the imaginary 
axis) is also retained for sufficiently small positive a and b. 

Let us now assume that the inequality (5) is satisfied and show that 
L(p) is stable. For this, we shall vary the coefficient c in such a way that 
it tends to zero through positive values without violating (5). For c = 0, 
we obtain the polynomial 

L(p) = p(p2 + ap + 6), 

which has one zero root and two roots with negative real parts. For a 
small positive c these two roots will not change very much, so that their 
product will remain positive and the zero root will assume a small positive 
or negative value. Since the product of all three roots equals the negative 
number —c, that root close to zero will be negative. Thus Theorem 6 is 
proved. 

In order to formulate the necessary and sufficient stability conditions 
for an arbitrary polynomial with real coefficients, we shall first fix our 
terminology. Let 

(Pu Pi2 . . . Pin\ 

p _ P21 P22 · · · V2n 

\Pn\ Pn2 · « · Pnn) 

be an arbitrary square matrix of order n. We shall call the determinant of 
the matrix 

(P11 P12 · · · Ρ Ι Α Λ 
P21 P22 . . P2k\ 

KPkl Pk2 . · . Pkk) 

its principal fcth minor, and denote it by Ak(P). Thus the determinant 
Ak(P) consists of those elements of the matrix P appearing in the first 
k rows and columns. 

THEOREM 7. Let 

a0pn + axpn~l + ··> + αη, α0 > 0, (8) 
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αι 

a0 

0 

0 

« 3 

« 2 

ax 

a5 

Ü4 

a3 

0>n-2 

0 

0 

an J 

be an arbitrary polynomial of degree n with real coefficients. In order 
to determine the stability of (8), the nth-order matrix 

Q= I 

is formed. Then, the polynomial (8) is stable if and only if all princi
pal minors Afc(Q), k = 1, . . . , n, of Q are positive.* 

For further clarity, we shall describe the form of the matrix Q. The 
kih column of Q has the form 

. . . Clfc+2 flfc+l ükak-lük-2 · · · , 

where the element ak lies on the principal diagonal; here, any element 
dk+j, whose index fc + j is negative or larger than n, is taken to be zero. 

EXAMPLES 

1. We shall derive Theorem 6 from Theorem 7. In the case n = 3, 
the matrix Q has the form 

1a\ a3 0 
ao a2 0 
^0 ai a3y 

Its three principal minors have the values 

Δι(<2) = a1} A2(Q) = «1^2 — 00^3, Δ8(<2) = α3 -A2(Q). 

The conditions that these values and the coefficient a0 be positive are 

a0 > 0, ai > 0, a3 > 0, α\α2 > «ο^3· 

From this set of conditions it clearly follows that coefficient a2 is positive. 
Thus in the case n = 3 Theorem 7 reduces to Theorem 6. 

* Theorem 7 will not be proved completely in this book. For a proof of this 
theorem, together with a comprehensive discussion of this question, see Fuchs, 
B.A., and Levin, V.l., Functions of a Complex Variable, Vol. II, pp. 264 ff., 
Reading, Mass.: Addison-Wesley, 1961. 
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2. In the case n = 4, the matrix Q has the form 

U i a3 0 0 1 
Q = J a0 a2 a4 0 I 
V ] 0 ai a3 0 f ' 

V. 0 Co O2 O4J 

Its principal minors have the following values: 

Ai(Q) = ax; 

A2(Q) = «1^2 — a0a3; 

A8(Q) = «3 Δ2(ο) — aia4; 

Δ4«2) - α4Δ3«?). 

The conditions that these minors be positive, together with the condition 
a0 > 0, are obviously 

a0 > 0, ai > 0, α2 > 0, α3 > 0, α4 > 0, 

A3(Q) = «102^3 ~~ ÖO«3 — αια4 > 0. 

10. The linear nonhomogeneous equation with constant coefficients. 
Here we shall give the solution of a linear equation with constant coefficients 
containing a free term of a special form which is the so-called quasipoly-
nomial. 

(A) We define a quasipolynomial to be any function F(t) which can be 
written in the form 

F(t) = h{tys + f2(t)e^ + ■■■+ uty·»', (i) 

where λχ, λ2, . . . , λη are complex numbers, and/i(2), /2W1 · · · > /m(0 are 
polynomials in t. From proposition (C) of §8 it follows that every solution 
of a linear homogeneous equation with constant coefficients is a quasi-
polynomial. Conversely, it can be proved that every quasipolynomial is 
a solution of some linear homogeneous equation with constant coefficients. 
If any two numbers of the sequence λχ, λ2, . . . , Xm coincide, for example 
if λι = λ2, then the terms of the sum (1) corresponding to these numbers 
can be combined and replaced by the term (/ i(0 + ^(O)6*1*· Thus the 
expression (1) can always be reduced to a form in which the numbers 
λι, λ2, . . . , Xm are mutually distinct. Let us note that the sum and product 
of two arbitrary quasipolynomials are also quasipolynomials; further, if 
we apply an arbitrary operator L(p) to an arbitrary quasipolynomial, then 
we shall again obtain a quasipolynomial. 
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Thus in the present section we shall study the equation 

L(p)z = F(t), (2) 

where F(t) is a certain quasipolynomial. Along with equation (2) we shall 
study the corresponding homogeneous equation 

L(p)u = 0. (3) 

The following proposition follows directly from (B) of §6. 
(B) If z is some solution of equation (2), then an arbitrary solution z of 

this equation can be written in the form 

z = z + u, 

where u is a certain solution of equation (3). 
Since we already know how to find an arbitrary solution of a homogene

ous equation, the problem reduces to finding one solution, or, as it is called, 
a particular solution, of equation (2) in the case when F(t) is a quasi-
polynomial. Furthermore, since every quasipolynomial may be written in 
the form (1) by virtue of (C) of §6, the problem becomes one of determin
ing a particular solution of equation (2) in the case when F(t) = f(t)eu, 
where/(0 is a polynomial. For this case, the answer is given by the follow
ing theorem. 

THEOREM 8. Consider the nonhomogeneous equation 

L(p)z = f(t)e", (4) 

in which f(t) is a polynomial of degree r in t, and λ is a complex number. 
Let k = 0 if L(\) 5* 0, and let k be the multiplicity of the root λ if 
L(X) = 0. Then there exists a particular solution of equation (4) of 
the form 

z = tkg(t)eu, (5) 

where g(t) is an rth-degree polynomial in t. The coefficients of g(t) can 
be found by the method of undetermined coefficients. 

Proof. We set 

fit) = a0tr+f*(t) (6) 

and look for a polynomial g(t) in the form 

g{t) = b0f + g*(t), (7) 

where the polynomials f*(t) and g*(t) are of degree r — 1. Further, we 
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may choose the number fc in such a way that 

L(p) = M(p)(p - X)k, (8) 

where M(\) 5̂  0. In order that the function (5) be a solution of (4), the 
condition [see §8, (A)] 

L(p)eutkg(t) = euL(p + \)tkg(t) = e»f(t) 

must be satisfied, i.e., g(t) must satisfy the condition 

L(p + \)tkg(t) = f(t). (9) 

The polynomial M(p + λ) has as its free term the number M(λ) ^ 0, 
and hence may be written in the form 

M(p + λ) = Μ(λ) + Μ*(ρ)ρ, Μ(λ) ^ 0. (10) 

Taking into account (6), (7), (8), and (10), we can write condition (9), 
as it is applied to g(t), in the form 

b0M(\)pktk+r + b0M*(p)pk+Hk+r + L(p + \)tkg*(t) = a0tr+f*(t). 
(11) 

By equating the terms containing f in (11), we obtain the relation 

b0M(\)pktk+r = a0f, (12) 

from which the coefficient bQ of the unknown polynomial g(t) is uniquely 
determined since M(\) 9^ 0. We shall now assume that b0 is already 
chosen, so that (12) is satisfied; then (11) takes the form 

L(p + \)tkg*(t) = f*(t) - b0M*(p)pk+1tk+r, (13) 

where the right-hand side consists of a known polynomial of degree r — 1, 
while the left-hand side consists of an unknown polynomial g*(t) of 
degree r — 1. Equation (13) differs from (9) only by the fact that the 
degrees of the polynomials in it have been decreased by one. By repeating 
for equation (13) the calculations which were carried out earlier for equation 
(9), we calculate the coefficient 61 of the term of highest degree in t [in 
this case, the (r — l)st degree] of the polynomial g*(t). By carrying out 
this process further, we can calculate all the coefficients b0, 61, . . .-, br of 
g(t) in such a way that (9) is satisfied, and, in the same way, we can find a 
solution of (4) in the form (5). 

I t would be possible to substitute a solution of the form (5) directly 
into (4) and, by assuming that the coefficients of g(t) are unknown, to 
obtain for these coefficients a system of linear equations by equating the 
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coefficients of identical terms in the left-hand and right-hand sides of 
equation (4). The calculations carried out above show that the system 
of equations obtained for the coefficients of the polynomial g{t) is solvable. 
Thus theorem 8 is proved. 

Note, The system obtained for determining the coefficients of g{t) is a 
system of linear equations with a triangular matrix: By equating the 
coefficients of Γβλ<, we obtain an equation containing only bo] by equating 
the coefficients of f~1eKt

f we obtain an equation containing only b0 and 
b\) and so on. 

We now establish an important property of quasipolynomials. 
(C) If the quasipolynomial 

F(f) = / i ( 0 e M + f2(t)ex*t + · · · + fm(t)e^\ 

where λχ, λ2, . . . , Xw are mutually distinct numbers which are identically 
zero on a certain interval τχ < t < r2, then all the polynomials fi(t), 
/ 2 ( 0 , · · · j fm(t) are identically zero, so that all coefficients of the quasi-
polynomial F(t) are zero. From this it follows that if two quasipolynomials 
F(t) and F*(t) are identically equal on the interval rx < t < r2, then 
their corresponding coefficients coincide. 

We shall prove proposition (C) by induction on the number m, which 
we shall call here the order of F(t). For m = 1 proposition (C) is valid, 
since in this case the equalities F(t) = f\{t)ex^ = 0 and fi(t) = 0 are 
equivalent. We shall now carry out the induction step from m — 1 to 
m(m > 2). If F(t) is identically zero on the interval r\ < t < r2, then 
this is also true for the quasipolynomial 

G(t) = pm(F(Oe~x-0, 

where p is a differentiation operator and I is the degree oifm(t). By propo
sition (A) of §8 we have 

(7(0 = gi(t) e ( x i-V* + g2(t) e^rJt +... + gm^(t) e
( * m - i - V , 

where 

Qi(t) = (p + λ< - Xw)z+1/i(0, i = 1, . . . , m - 1. 

The quasipolynomial G(t) is of order m — 1, and, since it is identically 
zero on the interval r\ < t < r2, it follows from the induction hypothesis 
that all the polynomials g\(t), . . . , gm-i(t) are identically zero. Let us 
suppose that one of the polynomials fi(t), . . . , / m _ i ( 0 is not zero, and 
then show that this assumption leads to a contradiction. Let us assume 
that fi(t) is of degree k, i.e., that fi(t) = a0tk + a,itk~l + · · · + ak, 
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where a0 5* 0. By direct inspection we see that 

9l(t) = (P + λχ - \m)l + 1fl(t) = OH - XmY + V + ' · · , 

and since g\(t) is identically zero on the interval rx < t < r2, we have 

(λι - Xm)z+1a0 = 0. 

Since the numbers λχ and \m are distinct, it follows that a0 = 0. This 
contradiction shows that all coefficients of the polynomials fi(t), . . . , 
fm-i(t) are equal to zero, i.e., F(t) = fm(t) e^. Hence we conclude that 
all the coefficients of fm(t) are also zero. 

The case of the identity of two quasipolynomials F(t) and F*(t) on the 
interval rx < t < r2 is reduced to the case already studied by forming 
the quasipolynomial F(t) — F*(t). Thus proposition (C) is proved. 

EXAMPLES 

1. We shall find a particular solution of the equation 

z + z = t cos t = iteü + \te~u. (14) 

We solve separately the equations 

z + z= \teü, (15) 

z + z= \te-{t. (16) 

It is evident that, if z is a solution of (15), then z is a solution of (16). 
Thus it is sufficient to solve only equation (15). Herer = 1, λ = i, k = 1. 
Therefore a particular solution must be found in the form 

t(cl + cH)eu. 

The relation (9) takes the form 

[(p + i)2 + l](cH + cH2) = it, 
or 

(p2 + 2ip)(clt + c2t2) = it. 
This gives 

2c2 + 2icl + 4ic2t = it, 

whence c2 = —&, c1 = ic2 = i. Thus the particular solution of (15) 
has the form 

-G'-s*")·"· 
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and the solution of (14) is found to be 

z + * = i t{eu + e~u) + 1 t\eu - e"") = | cos t + \ sin t. 

2. We shall study the function 

f(t) = cos 2t · cos 3* · e4<. 

Since every factor cos 2ty cos 3£, e4i is a quasipolynomial, their product /(£) 
is also a quasipolynomial. Let us reduce this quasipolynomial to the 
form (1): 

„2it , — 2it „Zit i Λ—Sit 
cos2*.cos3*.* 4 ' = ^ — ± i β + e e4 ' 

The reduction of polynomials to form (1) is useful in the solution of 
nonhomogeneous equations on the basis of Theorem 8. 

11. Method of elimination. Until now we have been occupied with the 
solution of only one linear equation with constant coefficients. However, 
a quite general system of linear equations with constant coefficients may, 
in a certain sense, be reduced to one equation. This reduction is realized 
by the method of elimination, which is similar to that used in the theory of 
algebraic (not differential) linear equations. We shall explain this method 
here and then draw certain conclusions. 

We shall investigate the system of equations 

Σ Li(V)x' = f{t), j=l,...,n, (1) 
s = l 

where x1, . . . , xn are unknown functions of the independent variable t, 
and / 1 (2), . . . , / n ( 0 are given functions of time t. Each symbol L{(p) repre
sents a polynomial with constant coefficients with respect to a differentia
tion operator p, so that one term, L3

s(p)xs, represents a linear combination 
with constant coefficients in the function xs and its derivatives. The num
ber of equations in system (1) is equal to the number of unknown functions. 

The order of the system (1) with respect to the unknown function x8 is 
denoted by q8, so that the general order of (1) is determined by the formula 
q = q\ + #2 + · · · + Qn- In posing the problem of solving (1), we 
naturally must assume that every unknown function xs has derivatives up 
to the order q8 inclusive; no assumption on the existence of derivatives of 
higher orders is contained in the statement of the problem. 

In applying the method of elimination to (1), we assume that each of 
the unknown functions xs, along with each of the functions f3(t), has an 
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appropriate number of derivatives. In making these assumptions, we are 
narrowing down, on the one hand, the class of the solutions under con
sideration (assumption on the adequate differentiability of the unknown 
functions), and, on the other hand, we are narrowing down the class of the 
equations under consideration [assumption of adequate differentiability 
of the functions fJ(t)]. The first of these restrictions can be removed by 
proving that if x , . . . , x is a solution of (1) and if the right-hand sides of 
f{t) have an appropriate number of derivatives, then each of the func
tions xs has an appropriate number of derivatives (see Examples 3 and 4). 

Let us proceed to a description of the method of elimination. 
(A) Let us study the matrix 

L\(p) .. . Li(p) 

V[{V) . . . Ln
n(p) 

of the system (1). Every element V8{p) of the matrix (2) is a polynomial 
in p. Thus it is possible to calculate the determinant D(p) of the matrix 
(2) and its minors. The cofactor of the element Lj

s(p) of (2) (i.e., the minor 
of this element taken with the proper sign) will be denoted by M*(p). 
From any course in higher algebra it is known that the identity 

Σ M){p)Li{p) = t*D(p) (3) 

is valid, where δι
8 is the so-called Kronecker symbol: 

8J = 1, δί = 0 for i 9^ s. 

Multiplying equation (1) by M)(p) (i.e., carrying out a series of differ
entiations, multiplications and additions) and then summing up with 
respect to j , we obtain the equality 

Σ M){V)Li{p)xs = Σ Mj(p)f(t). (4) 

[In going from (1) to (4), we have used the differentiability assumptions 
imposed on the functions x8 and fJ(t)]. By virtue of (3) the equality (4) 
can be rewritten in the form 

Diptf = Σ Mj(p)f(t). (5) 
j 

The system (5), i = 1, . . . , ft, has the property that every unknown 

(2) 
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function x% appears in only one equation of (5). We have thus proved that 
if the system of functions x j . . . y % i s a solution of (1), then each indi
vidual function x% is a solution of (5). 

I t should not be supposed, however, that if for every number i a solution 
x% of equation (5) is selected in an arbitrary manner and the system of 
functions x1, . . . , xn is then formed, the system of functions obtained will 
be a solution of system (1). In order to find the general solution xl, . . . , xn 

of (1), it is necessary to find the general solution xl of every equation (5), 
i = 1, . . . , n, then form the system of functions x1, . . . , xn

) and finally 
determine those conditions (the relations between the constants of inte
gration) under which this system of functions satisfies the system (1). 

We shall now draw certain conclusions from the method of elimination. 
First we shall formulate the result obtained in proposition (A) for the case 
of the homogeneous system of equations 

£ Li(p)x8 = 0, j = 1, . . . , n. (6) 
e = l 

(B) If the system of functions x , . . . , x is a solution of the system (6), 
then each individual function xl appearing in this solution satisfies the 
equation 

DWx* = 0, 

where D(p) is the determinant of the matrix (L3
s(p)) of the system (6). 

In particular, it follows from this that if the determinant D(p) is a stable 
polynomial [see §9, (A)], then every solution re1, . . . , x11 of (6) satisfies the 
inequality 

(x1)2 + · · · + (x71)2 < R2e~2at for t > 0, (7) 

where a is a positive constant depending on the system (6), and R is a 
constant depending on the solution x1, . . . , xn. 

The inequality (7) follows directly from inequalities (3) of §9. 
We shall now show how the system of equations (6) can be solved by 

using the elimination method. 
(C) Let us assume that the determinant D(p) of (6) does not vanish 

identically, and let λ be a root of multiplicity k of D(p). We shall seek a 
solution of (6) in the form 

xs = gs(0eu, s = 1, . . . , n, (8) 
where 

9Ht),..., g"(t) (9) 

is a polynomial of degree k — 1. By substituting the functions (8) into 
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(6), we obtain [see §8, (A)] 

0 = Σ Li(p)gs(t)eu = f ) eXiL>(p + \)g\t), j=l,...,n; 
8=1 8=1 

after factoring out eu we have 

2 # ( P + X)ffe(0 = 0, i = 1, . . . , n. (10) 

Thus, the system of functions (8) is a solution of (6) if and only if the 
polynomials (9) satisfy (10). Each term 

Li(p + \)g8(t) 

of the left-hand side of (10) is a polynomial in t, and its coefficients are 
linear homogeneous functions of the coefficients of the polynomial g8(t). 
Thus the set of conditions (10) is equivalent to a certain system of linear 
homogeneous equations in the coefficients of the polynomials (9). From 
the theory of linear homogeneous algebraic equations it follows that, by 
finding the coefficients of the polynomials (9) from this linear system, we 
may take a certain number of these coefficients as arbitrary and express 
the remaining ones in terms of them. (The case where the number of 
arbitrary coefficients is equal to zero is not excluded a priori.) The solu
tions (8) of the system (6) obtained in this manner will be called the 
solutions corresponding to the root λ. It is clear that these solutions are 
defined for all values of t, — oo < t < oo. 

THEOREM 9. Let us assume that the determinant D(p) of the system (6) 
does not vanish identically, and let 

λχ, λ2, . . . , Xm 

be the set of all distinct roots of the polynomial D(p). Then an arbi
trary solution x1, . . . , xn of (6) can be written in the form 

x8 = xsi H + x*m, s = 1, . . . , n, (11) 

where 

is some solution of system (6) which corresponds to the root λ* [see (C)]. 
Hence, in particular, it follows that every solution of (6) is defined for 
all values of t. 
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Proof. Let us assume that 

1 »2 „n 

is a solution of (6) which is defined on the interval rx < t < r2; we shall 
show that on this interval it can be written in the form (11). By proposi
tion (B) every function xs on the interval τχ < t < r2 satisfies the equation 

D(p)x° = 0, 

so that on the same interval by proposition (C) of §8 it can be written 
in the form 

m 
xs = Σ e'(t)eXit, s = l , . . . , n , (12) 

i=l 

where g\(t) is a polynomial whose degree is less than the multiplicity of 
the root λζ·. By substituting the system (12) into (6), we obtain [see §8, (A)] 

n tn m t n v 

s=l 1=1 i = l \ e = l / 

j = 1, . . . , n. (13) 

Since Σ£=ι Li(p + \)ui(t) is a polynomial in t and the numbers λχ, . . . , 
\m are mutually distinct, it follows from proposition (C) of §10 and from 
(13) that 

£ Li(p + \i)g8i(t) = 0; % = 1, . . . , m, j = 1, . . . , n. (14) 
e = l 

Multiplying (14) by ex**, we obtain 

o = Σ eXiiL^v + \i)gi(f) = Σ ^(p)ffi«)ex,i, 
8=1 8=1 

which shows that 
x\ = g9i(t)eXit, s = 1, . . . , n, 

is a solution of the system (6) for each i = 1, . . . , n. Thus Theorem 9 is 
proved. 

EXAMPLES 

1. We shall solve by the elimination method the system of equations 

x1 + x1 + x2 = 0, x1 - x1 + x2 + x2 = 0. 
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We rewrite this system symbolically as 

(p + l)*1 + px2 = 0, 

(p2 - l)*1 + (p2 + l)x2 = 0. 

The determinant of the system, as is easily seen, is equal to p2 + 2p + 1 ; 
it has a double root λ = — 1. According to Theorem 9, the solution of the 
system should have the form 

x1 = (at + b)e-\ 
x2 = (ct + d)e-K 

Substituting these functions into the first equation (and factoring out e"~')> 
we have 

a + c — ct — c? = 0, 
whence 

c = 0, 

a = d. 

The same relations for the coefficients may also be obtained by substitution 
into the second equation of the system. Thus the general solution of the 
system under consideration may be written in the form 

x1 = (at + b)e-\ 
x2 = ae~\ 

where a and b are arbitrary constants. 
2. We shall apply the elimination method to the normal system of 

linear homogeneous equations with constant coefficients, 
n 

x3 = Σ α*χ*> ·? = !> · · · > n> ( 1 5 ) 
8=1 

(such a system will be studied more thoroughly in §14). We rewrite the 
system (15) by using the symbolism 

n 

px° = Σ α«χ*> ■? = *> · · · > n> 

or 
Σ (αί ~ V ti)x8 = 0, j = 1, . . . , η, (16) 

where 8J
S is the Kronecker symbol. The system (16) is a special case of the 
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general system (6), in which 

Ll(p) = oi — pdl, 

and the determinant D(p), in this case, is the characteristic determinant 
of the matrix (αζ) of the system (15). The solution of (16) must now be 
obtained by the method of undertermined coefficients described in Theo
rem 9. In the particular case when the roots λχ, . . . , λη of D(p) are simple, 
there corresponds to every root \{ the solution 

Xi = 0?eM, s = 1, . . . , n, (17) 
where 

g\, 9% . · . ,gl (18) 

are polynomials of zero degree, i.e., numbers. Substituting the functions 
(17) into (15), we obtain for the undetermined coefficients (18) the system 
of linear equations 

n 

8=1 

which shows that the numbers (18) are the components of the eigenvector 
of the matrix (aj

8) with eigenvalues \{. Since all eigenvectors corresponding 
to the same eigenvalue λ2· are proportional in the case of simple roots, then 
by denoting the components of any eigenvector with eigenvalues λ; by 

h 1 7>2 hn 

fl if fliy . . . , fliy 

we obtain 
8 ITS Ί 

Qi = c hiy s = 1, . . . , n. 

Thus the general solution of (15) in the case of simple roots may be written 
in the form 

n 
x8 = ^ c%-ev, 8 = 1, . . . , n , 

where c1, . . . , cn are arbitrary constants. 
3. We shall study the linear system 

£ Li(p)x' = f(t), j=l,...,n, (19) 
8 = 1 

with constant coefficients [see (1)]. Let qi be its order with respect to the 
unknown xl and let 

Q = qi + Q2 ~\ l· qn 
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be the order of the system (19). Further, let 

L\(p) . . . Ll(p)\ 
: ) (20) 

ά(ρ) ... Lliv)) 
be the matrix of (19) and D(p) its determinant. We shall show that the 
degree of the polynomial D(p) does not exceed the number g. If this degree 
is equal to g, then we shall call the system (19) normalizable. In this case 
it can be solved for the higher derivatives 

(x1)(ffi), . . . , (xn)(q"\ (21) 

and therefore it can be reduced to a normal system [see §4, (B)]. 
By assumption, the degree of the polynomial L3

8(p) does not exceed the 
number q$, so we can write 

Li(p) = alpq° + · · · , (22) 

where the dots denote terms of degree lower than q8. By calculating the 
determinant D(p) of (20), while taking into account formula (22), we 
have at once that 

D(p) = Δ · p« + - · · , 

where Δ is the determinant of the matrix (aj
8). In this formula we have 

omitted terms of degree lower than g. Thus we have established that the 
maximum possible degree of the polynomial D(p) is g, and if this degree is 
equal to g, then Δ ^ Ο . If we select those terms in (19) with the highest 
derivatives (21), we arrive at the system 

Σ <*«V)(*e) + · · · = /y(0, j = 1, · · · , n. (23) 
s = l 

Thus, if (19) can be normalized, then A ^ O and the system (23) is solva
ble for highest derivatives (21). 

Since the normalizable system (19) reduces to a normal one, then, by 
what was said in Example 3 of §3, every solution of (19) has an arbitrary 
prescribed number of derivatives if only the right-hand sides f(f) of (19) 
are differentiable an appropriate number of times. 

4. We shall now study the case when the determinant D(p) of the sys
tem (19) is not identically zero, but the degree of D(p) is less than the order 
q of the system (19). We shall show that even in this case every solution of 
(19) has any prescribed number of derivatives, if only the right-hand sides 

f3\t) are sufficiently differentiable. 
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By hypothesis, the degree of D(p) is less than q, so that the determinant 
Δ is zero. Thus, the columns of the matrix (αζ) are linearly dependent; let 
b1, . . . , bn be the coefficients expressing this dependence. Some of the 
numbers b1, . . . , bn may be zero. We shall change the numbering of the 
functions x1, . . . ,xn so that the relations 

b1 * 0, b2 J* 0, . . . , bm * 0, b m + 1 = · · · = bn = 0, 
1 < m < n, (24) 

«1 > β2, «1 > ff3, · · · , βΐ > 9m, 

are valid. Since by (24) we have b1 ?* 0, we may assume that b1 — 1. 
We shall now replace the indeterminates a;1, . . . , xn by new indetermi-

nates y1,. . . , yn by setting 

a:1 = y1; xl = y{ + bY^iy1, i = 2, . . . , m; 
xl = yi

J i = m + 1, . . . , n. (25) 

The relations (25) can be solved for the new indeterminates y1, . . . ,yn, 
namely, 

2/1 = x1; yi = xl — b^'^x1, i = 2, . . . , m; 
y{ = x\ i = m + 1, . . . , n. (26) 

Substituting the new indeterminates 2/1, . . . , yn into (19) in place of 
xx

9 . . . , xn
} we obtain the new system of equations 

Σ Ls* W = /'(0, i = 1, .. ., n. (27) 
θ = 1 

I t is immediately evident that the order g* of the system (27) with respect 
to the function y1 is less than qiy and its orders with respect to the remain
ing unknowns y2, . . . , yn are correspondingly equal to q2, . . . , qn> Thus 
the order q* of (27) is less than the order q of (19). 

If we consider the transformations (25) and (26) as linear transformations 
of the variables y1, . . . , yn into the variables xl, . . . , xn, and conversely, 
with coefficients which are polynomials in p, then it is evident that the 
determinant of each of the linear transformations (25) and (26) is equal to 
+ 1 . From this it follows that the determinant D*(p) of (27) is equal to 
the determinant D(p) of (19). Thus the difference between the order and 
the degree of the determinant in system (27) is less than in system (19); 
by applying the transformation described a finite number of times, we 
obtain a normalizable system. 

Now let 
xi = <p\t\ i=l,...,n, (28) 
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be some solution of the system (19). Since the order of (19) with respect to 
the unknown xl is equal to gt-, the function <p%{t) may be assumed to be 
differentiable qi times. By virtue of the transformation (26) the solution 

V{ = * ' (0 , ί = 1, . . . , n, (29) 

of (27) corresponds to the solution (28) of (19). From (26) it is evident 
that ψι(ή is differentiable qi times. Consequently, from every solution (28) 
of (19) we can obtain a certain solution (29) of (27), so that no solution is 
lost in going from (19) to (27). Since, after a series of transformations, we 
arrive at a normalizable system whose solutions have any given number 
of derivatives, it is evident from (25) that a solution (28) of (19) also has 
any prescribed number of derivatives. 

12. The method of complex amplitudes. In many branches of engineer
ing and physics dealing with oscillating processes, harmonic oscillations 
play an important role. Mathematically, a harmonic oscillation is defined 
by a function 

r cos (ωί + a), r > 0. (1) 

Here r is the amplitude of the oscillation, a is its initial phase, and the 
number ω, determining the frequency of the oscillation, is usually called 
the frequency. Actually, if v is the number of oscillations per second, then 

ω = 2πν, 

so that ω is the number of oscillations in 2π seconds, not in one second. 
We also noticed (see Example 1, §4) that the equation 

x + ω
2

χ = o (2) 

has as its general solution the harmonic function (1) of frequency ω with 
an arbitrary amplitude and phase. Equation (2) is called the equation of 
the harmonic oscillator. 

In the study of harmonic oscillations it is often necessary to deal with 
the equation 

L(p)x = r cos (ωί + <*), (3) 

where the right-hand side contains a harmonic function. Equation (3) 
is easily solved by using the method set forth in Theorem 8, since the 
harmonic function is a quasipolynomial. In the case when the coefficients 
of the polynomial L(p) are real, Theorem 8 can be utilized in a somewhat 
different way. In electrical engineering this method is called the method 
of complex amplitudes and is explained in what follows. 



12] THE METHOD OF COMPLEX AMPLITUDES 77 

(A) In conjunction with the real harmonic function (1) we shall study 
its corresponding complex harmonic function 

peiut, (4) 
where 

p = reia. (5) 

The function (4) has the property that its real part coincides with the 
function (1): 

ρβίωί = re
iiut+a) = r cos (o)t + a) + ir sin (ωί + a). 

The complex number (5) is called the complex amplitude of the complex 
harmonic function (4); it combines the amplitude r and the initial phase a. 
Let us note that 

r = |p|. 

In the case that the coefficients of L(p) are real, the equation 

L(p)z = pe" (6) 
is solved as a preliminary to the solution of equation (3). I t is immediately 
evident that, if z = x + iy is a solution of (6), then # is a solution of (3). 
Assuming that ιω is not a root of L(p), 

Π%ω) ^ 0, (7) 

we seek (see Theorem 8) a solution of equation (6) in the form of a complex 
harmonic function z = ae%(at with complex amplitude σ = seiß. By sub
stituting z = ael<at into (6) we obtain 

σ = ΤΓ-Λ (8) 

[see §7, (B)]. Thus a solution of (3) is given by 

x = scos (ωί + β). (9) 

The amplitude s and initial phase β of this solution are determined from 
the formula 

iß re 
sep = L(iu>) 

[see (8)]. In particular, s = |σ| = r/|L(zco)|. If the polynomial L(p) 
is stable, then (7) is obviously satisfied. In this case the general solution 
of equation (3) has the form 

x = u + s cos (ωί + β), (10) 
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where u is the solution of the homogeneous equation L(p)u = 0. The 
solution u of this homogeneous equation tends to zero as t —> oo, and 
therefore any solution of (3) tends to the solution (9). The solution (9) 
is called stable and it corresponds to a steady-state process, while the solu
tion (10) describes a transient process. The stable solution (9) is the unique 
periodic solution among all solutions (10). 

In applying the method of complex amplitudes, we usually do not study 
the solutions of the real equation (3); instead, we proceed directly from 
the complex equation (6). 

We shall now present the method of complex amplitudes as it is applied 
to a system of equations. The problem is to find a particular solution of 
the system of equations 

X) L{(p)x8 = rj cos («« + α'), j = l , . . . , n , (11) 

with real coefficients, whose right-hand sides are harmonic oscillations of 
the same frequency ω. 

(B) We shall assume that the determinant D(p) of the system (11) 
[see §11, (A)] does not vanish at p = ίω. To find the solution of (11), we 
shall first find the solution of the system of equations 

Σ L{(p)zk = pVB<, j = 1,.. ., n, (12) 

where 

Since the coefficients of all the polynomials H{p) are real, we shall obtain 
the following solution of (11) from any solution z1, . . . , zn of (12) : 

xk = Rezk, k = 1, . . . , n. 

We find the solution of the system (12) in the form 

zk = σ * β < ^ k== i 9 m m m 9 f i m (13) 

By substituting the functions (13) into (12) and factoring out el<a\ we 
obtain the system of equations 

Σ Urn** = j , 
which can be solved uniquely for the unknowns σΑ, because its determinant 
Ζ>(?ω) is assumed to be different from zero. We shall find solutions of this 
system and assume that 

σ* = skeiß, 
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so that by (13) we obtain the solution 

xk = sk cos (erf + ßk), k = 1, . . . , n, (14) 

of (11). If the determinant D(p) of (11) is a stable polynomial, then the 
inequality Ό(ίω) j* 0 is satisfied, and in addition every solution of (11) 
differs from the solution (14) by a term which tends to zero as t —» oo 
[see §11, (B)]. Thus in the case of a stable polynomial D(p), the solution 
(14) of (11) not only consists of the particular solutions, but is itself a 
stable solution. 

EXAMPLE 

We shall solve the equation 

x + ω\χ = r cos (o)t + a) (15) 

of the harmonic oscillator which is subject to an external harmonic force. 
Instead of (15) we shall study the corresponding complex equation 

2 + ω\ζ = rei{ut+a\ (16) 

If ω τ^ ωχ, then (16) has a solution of the form z = ael<at, so that by (8) 

ia 
re 

Thus (15) has the solution 

x= |„2 T » iCosM + fl, (17) 

where 0 = a for ωχ > ω and β = a + π for ωχ < ω. Formula (17) 
gives the forced oscillations of the oscillator under a harmonic external 
force. Here it is important to note the phenomenon of resonance, which 
incorporates the fact that the amplitude 

r 

of a forced oscillation increases as the difference |ωχ — ω\ decreases. I t 
is also interesting to note that the phase β of the oscillation (17) coincides 
with the phase a of the external force for ωχ > ω and is opposite to it for 
coi < co. The general solution of (15) may be written in the form 

x = Π cos (ωχί + αι) + -r-z -{ cos M + ß), 
cof — w* 
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where u = rx cos (o>it + αχ) is a solution of the corresponding homo
geneous equation. The term u is called the natural oscillation of the os
cillator. 

If ωι = ω, then the formula (17) loses its meaning. In this case the 
solution of (16) must be sought in the form 

z = pteiat, 

where p is a complex number (see Theorem 8). By formula (9) of §10, we 
have 

[(ρ + ζω)2 + ω2]ρ* = reia
} 

whence 
= re^_ 

P ~ 2τω ' 

Thus for coi = ω the particular solution of equation (16) has the form 

2τω 2ω 

and the solution of equation (15) proves to be 

rt 
X = — COS 2ω ( ut + a — ~) = —^ sin (ωί + a). 

Thus for ω = coi, the phenomenon of resonance involves the fact that the 
amplitude Η/2ω becomes variable and increases without limit with time. 
In a real apparatus this phenomenon cannot be observed due to the 
presence of "friction." 

13. Electrical circuits. The theory of ordinary differential equations 
finds applications in various fields of engineering; it is applied in electrical 
engineering and in particular in radio engineering. With some idealization, 
the performance of a radio device can be mathematically described by a 
system of ordinary differential equations; the values of currents flowing 
through various elements of the device or the voltage drops between 
individual junctions of the device are the unknown functions of time in 
this system. Radio devices afford a very rich source of material illustrating 
the application of the theory of ordinary differential equations—much 
richer than, for example, the problems of mechanics. This richness is 
characterized in particular by the fact that a system of ordinary differential 
equations arising from a certain engineering problem often can be simulated 
by an electrical device, i.e., an electrical device may be designed whose 
performance is described by the same system of equations as the engineer-
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ing object in which we are interested. An electrical device so designed can 
help solve the system of equations, since in observing its performance we 
are at the same time observing the behavior of the unknown functions 
which satisfy the system of equations. The physical laws governing the 
performance of electrical devices are formulated so simply that they can 
be easily communicated even to a beginner in physics. Here, in a some
what dogmatic form, the simplest laws of electrical engineering are given 
along with several examples of the application of differential equations to 
the study of the performance of electrical devices. 

Resistors, inductors (self-induction), and capacitors (condensers) are 
some of the most important components from which electrical devices 
are designed. Each of these components is a two-terminal element, i.e., has 
two contacts which in assembling an electrical device are connected to the 
terminals of other components. During the operation of an electrical 
device, an electric current passes through the two-terminal element 
installed in the device, and the electrical state of the two-terminal element 
at each instant t is characterized by two values: the current Iab(t) which 
flows from the pole a to the pole b of the two-terminal element ab, and the 
voltage drop Uab(t) from pole a to pole b. The current Iab(t) can take 
positive as well as negative values; if the current flows from pole a to pole b 
(keeping in mind the so-called technical direction of the current), then the 
number Iab(t) is positive, and in the opposite case it is negative. The volt
age drop Uab(t) from pole a to pole b is the difference Va(t) — V^it) of the 
potentials at the pole a and b. Thus both values, Iab(t) and Uab(t), which 
describe the state of a two-terminal element ab at instant t, depend on 
which pole is put in the first place and which in the second. When the order 
of the poles changes, each of the values Iab(t) and Uab(t) obviously changes 
its sign, so that we have the relations 

ha(t) = -Idb(t), (1) 

Uba(t) = -Uah(t). (2) 

For every two-terminal element ab, the functions Iab{t) and Uab(t) of 
time t are not independent, but are related to each other by physical laws 
governing the performance of a two-terminal element. For resistance, 
inductance, and capacitance, these laws are given by the following 
proposition: 

(A) For a two-terminal element ab representing resistance, the relation
ship (Ohm's law) 

Uab(t) = RabIab(t) (3) 

is valid; here Rah is a positive coefficient called the resistance, which 
for different two-terminal elements can take different values but which is 
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constant for a given element; here we always have 

Rba = Rab· (4) 

For a two-terminal element ab which represents inductance, the relation 

Uab(t) = LabjtIab(t) (5) 

is valid; here Lab is a positive coefficient called the inductance which can 
take different values for different two-terminal elements but which is 
constant for each given element. Here 

Lba = Lab- (6) 

For a two-terminal element ab which is the capacitance (the condenser) 
the relationship 

Iab(f) = CabJtUab(t) (7) 

is valid, where Cab is a positive coefficient called the capacitance, which 
can take different values for different two-terminal elements but has only 
one value for a given element; here we have 

(8) 

(9) 

represents a physical quantity describing the state of the condenser at a 
given instant and is called the charge of the condenser ab. The relation (9) 
is often written in the form 

If we integrate 

The function 

Lab — ^ba· 

the relation (7), we obtain 

Uah(t) = uab(t0) + ^- j 

Qabit) = CabUab(t) 

Iab(t) dt. 

h\Iah Uab(t) = C^J !ab(t) dt, 

where flab(t) dt represents the charge of the condenser. 
Relation (4) follows from (1), (2), and (3): 

Rabhbit) = Uab(t) = -Uba(t) = -Rbaha(t) 
= Rba( — Iba(t)j = Rbalab(t). 

The relations (6) and (8) are established in a similar way. 
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An important role in the performance of electrical devices is given to 
the phenomenon of mutual induction between two inductances. 

(B) Two inductances αφι and a2b2 with values Laxbx = L\ and 
Lah = L2 can be in a state of mutual induction which is described by the 

2 2 

coefficient of mutual induction, M = Maiblta2b2- In this case the voltage 
drop Uaibi(t) = Ui(t) in a two-terminal element αφχ is related not only 
to the current Ια^λ(ί) = Ii(t), but also to the current Ia2b2(t) = J2W· 
In the same way, the voltage Ua2b2(t) = U2(t) in a two-terminal element 
a2b2 is related not only to the current I2(t) but also to the current Ii(t). 
The exact relations are given by the formulas 

Ul(t) = Lx ^ hit) + M± / 2(0, (10) 

ffa(0 = L a | l 9 ( 0 + M | / i ( 0 . (11) 

In this case the equalities 

M-a\b\,a2b2
 = = ""̂  a2b2,a\bi == -Maibitb2a2 

are valid for the coefficient of mutual induction Maiblta2b2, as well as the 
inequality 

M2 < LXL2. 

The greater the "interaction" of two inductances, the more closely the 
coefficient of mutual induction M approximates in magnitude the quantity 
VLiL2. 

The two-terminal elements described in proposition (A) are called 
passive because they cannot themselves initiate an electrical phenomenon 
in a device. The active two-terminal elements which serve as the direct 
cause of electrical currents in a device are voltage sources and current 
sources. 

(C) In the two-terminal element ab which is a voltage source, the 
relationship 

Uah{t) = U(t) (12) 

is valid, where U(t) is a given function of time t describing a voltage source. 
Equation (12) may be considered as relating the functions Uab(t) and 
Iab(t), except that this relation is such that the function Iab(t) does not 
appear in it. For a current source ab> the relationship 

Iab(t) = 7(0 

is similarly valid, where I(t) is a given function of t describing the current 
source. The voltage sources and current sources most often studied are 
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those for which U(t) and I(t) are either constants or periodic functions of 
the form 

r cos (ωί + <*). 
These are the principal, and at the same time the simplest, components 

from which electrical devices are assembled. The devices themselves are 
called electrical networks, and the components from which they are as
sembled are called their elements. It should be noted that elements exist 
which are different from those described above; in particular, there exist 
multiterminal elements. An example of a three-terminal element is the 
electron tube (triode), whose performance will be discussed later (see §29). 

Kirchhofs laws. We shall now proceed to formulate Kirchhofs laws, 
which govern the performance of electrical networks. 

(D) Anelectrical network is defined as a finite set of elements (in particu
lar, two-terminal elements of the form described above) with poles that 
are connected in so-called "junctions" of the network so that at each 
junction two or more poles of the various elements of the network are 
joined. Kirchhofs first law asserts that the sum of all currents entering 
each junction of a network from all elements connected to this junction is 
equal to zero. Kirchhofs second law follows from the proposition that at 
each junction a of a network there is an electric potential Va(t), and the 
voltage drop Uab(t) from junction a to junction b is the difference between 
the potentials in junctions a and b, so that Uab(t) = Va(t) — Vb{t). 
From this assumption it follows that, if a,b,c,. . . ,h,k is a certain sequence 
of junctions in an electrical network, then the relation 

Uabit) + Ubc(t) + · · · + Uhk(t) + Uka(t) = 0 

is valid. This relation is Kirchhofes second law. It is stated as follows: 
The sum of voltage drops around a closed circuit of a network is equal to zero. 
We do not assume in these formulations of Kirchhofes laws that all the 
elements have two terminals. We shall now define more clearly Kirch
hofes laws as applied to networks composed of only two-terminal elements. 

(E) Let S be a certain electrical network composed of two-terminal 
elements. Kirchhofes first law states that, if a is an arbitrary junction of a 
network S, and if bia, b2a, . . . , bqa is the set of all two-terminal elements 
connected to the junction a (Fig. 12), then 

hia(t) + Ih2a(t) + · · · + hqa(t) = 0. 

Kirchhofes second law states that if ab, be, ... , hk, ka is a sequence of 
two-terminal elements in a network S [each successive two-terminal ele
ment starts at that junction at which the preceding one ends (Fig. 13)], 
then 

Uab(t) + Ubc(t) + · · · + Uhk(t) + Uka(t) = 0. 
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FIGURE 12 FIGURE 13 

To calculate the performance of an electrical network consisting of 
two-terminal elements we must find the current and voltage in each two-
terminal element in the network; thus if the network consists of n two-
terminal elements, we face the problem of finding 2n functions of time. 
The law governing the performance of each two-terminal element gives one 
relation between the functions sought so that by this law we obtain n 
relations for 2n unknown functions. The remaining n relations are given 
by Kirchhofes laws. (It can be proved that Kirchhofes laws give exactly 
n independent relations, but we shall omit this proof.) As a result of using 
all the relations, we obtain a system of 2n equations for 2n unknown func
tions. These equations are partly differential and partly finite (alge
braic). Kirchhoff's laws give finite equations which must first be used for 
eliminating part of the unknown functions. For this elimination one of 
the following two methods is usually employed. The first method relies 
on the fact that it is possible to take currents for basic unknown functions 
and express the voltages in terms of them. In this case it is first necessary 
to use Kirchhofes first law: to express all currents in terms of the minimal 
number of independent currents (by this law). Such independent currents 
are called loop currents. After this, Kirchhofes second law is to be used by 
replacing every voltage by its expression in terms of the corresponding 
current. This method is called the method of loop currents. In the second 
method the voltages on the two-terminal elements are taken as the basic 
unknown functions, and the currents are expressed in terms of these 
voltages (with the aid of laws governing the performance of each two-
terminal element). In this case it is first necessary to express all voltages 
in terms of the minimal number of independent voltages by means of 
KirchhofTs second law. Independent voltages are called nodal voltages. 
Next it is necessary to use KirchhofFs first law by replacing every current 
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by its expression in terms of the corresponding voltage. This method is 
called the method of nodal voltages. 

Operational impedance of a two-terminal element. Before proceeding to 
the analysis of examples of electrical network calculation, we shall write 
relations (3), (5), (9), (10), and (11), i.e., the laws governing the per
formance of two-terminal elements, in a symbolic notation. 

(F) Let ab be a two-terminal element representing resistance, inductance, 
or capacitance. Let us set 

Uab(t) = C7(0, Iab(t) = J(0, 
Rab = Rj Lab = Lj Cab = C. 

If in addition to the symbolic notation previously used [see §7, (A)], we 
introduce the natural notation (l/p)f(t) = ff(r)dT, then (3), (5), and 
(9) can be expressed by one formula 

U(t) = Z(p)I(t) (13) 

(Fig. 14), where, respectively, Z(p) = Ä, Z{p) = Lp, Z(p) = 1/Cp. 
The function Z(p) is called the impedance of the two-terminal element ab 
in operator form, or the operational impedance. For the capacitance it is 
not a polynomial, but a rational function 1/Cp: 

U(t) = ^ I(t). (14) 

The relation (14) after multiplication by Cp acquires the usual form 
I(t) = CpU(t), which is merely a polynomial in p. If we set 

then relation (13) takes the form 

7(i) = G(p)U(t). 

The function G(p) is called the admittance of two-terminal element ab in 
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FIG. 15. Standard symbols of certain elements of electrical networks. 

operator form and has the corresponding form: 

σ ( ρ ) = 7Γ °ω = h 0<p) = Cp. 

The relations (10) and (11) in operational notation have the form 

U1(t) = LlVIx(t) + Mpl2{t), 
U2(t) = L2pl2(t) + MVh{t). 

We shall proceed to the analysis of some examples. As a visual aid, elec
trical networks are represented graphically by a point for every junction; 
and for every two-terminal element, a straight line segment or a curve for 
the connection to the corresponding junctions; on every such segment 
the corresponding two-terminal element is represented by the conventional 
designation (Fig. 15). 

EXAMPLES 

1. {Oscillatory loop.) Let S be an electrical network with four junc
tions a, by c, and d consisting of four two-terminal elements ab, be, cd, and 
da (Fig. 16). The element ab is the inductance L, be is the resistance R, cd 
is the capacitance C, and, finally, the element ad is a voltage source 
Uad(t) = U(t). For the calculations we shall use the method of loop 
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currents. By applying KirchhofFs first law to junction 6, we obtain 
Iab(t) + Icb{t) = 0, or Iab(t) = Ibc(t). This is always the case when 
exactly two two-terminal elements are connected to one junction. Thus 
we have 

Iab(t) = Ibc(t) = I ed(t) = Ida{t) = I(t). 

Here I{t) is the loop current. Further, by writing for every two-terminal 
element the law governing its performance, we obtain 

Uab(t) = Lpl(f), 
Ucd(t) = ^ /(*), 

Ubc(t) = B/(0, 
Uda(t) = -U(t). 

KirchhofFs second law gives 

Uab(t) + Ubc(t) + Ucd(t) + Uda(t) = 0. 

From (15) and (16) we obtain 

( 
Lp + R + ^j I(t) = U(t). 

(15) 

(16) 

(17) 

Both sides of (17) can be multiplied by p (which involves differentiation 
term by term), whence we obtain 

(LP
2 + Rp + £) I(t) pU(t). (18) 

This is the differential equation of the network under examination. 
If the two-terminal element ad is removed from the network, we shall 

obtain a so-called open circuit, consisting of three passive two-terminal 
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elements ab, be, cd. This network (as a whole) can be considered as a 
two-terminal element with poles a and d (Fig. 17). The law governing 
the performance of such a two-terminal element is given by relation (17), 
which is analogous to (13). Here the function Z(p) = Lp + R + 1/Cp 
is an impedance in operator form and its inverse, 

G(p) Cp 
LCp2 + RCp + 1 

is an admittance in operator form. 
If we set U(t) = 0, then this will be equivalent to the assumption that 

in our network the active two-terminal element ad is absent, and the 
network consists of three passive two-terminal elements ab, be, cd, where 
the junctions a and d coincide (Fig. 18). The equation describing the 
performance of this passive electrical network S* has the form 

L Lp 2 + Rp + (?) ' » = 0. (19) 

As previously noted, electrical phenomena do not arise by themselves in 
a passive electrical circuit, and this is reflected by the fact that the particu
lar solution of equation (19) is the function I(t) = 0. It is possible, how
ever, to study the performance of the electrical network S* by first assum
ing that it already has a current, and then determining how this current 
will vary with time. Let λχ and λ2 be roots of the polynomial 

Lp2 + Rp + (20) 

Since the numbers L, R, C are positive [see (A)], the real parts of the roots 
λι and λ2 are negative, so that the electrical process in the network S* will 
be damped with time [see §9, (A)]. This damping can occur, however, in 
various ways: if λχ and λ2 are complex, then every nonzero solution of (19) 
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has an oscillatory character (see Example 3, §7); however, if λχ and λ2 are 
real, then the damping occurs aperiodically, that is, any solution of (19), 
starting at a certain instant, becomes monotonic. The question of whether 
the roots λι and λ2 are complex or real is determined by the sign of the 
number 

k2 _L 
LC (I)' 

if Δ < 0, then the solutions of (19) are oscillatory; if Δ > 0, they are 
aperiodic. 

Of particular interest is the oscillatory loop S* where the resistance R is 
completely absent. In this case our circuit consists only of two passive 
elements ab and cd, and b = c, a = d (Fig. 19). Under this assumption 
the equation of the electrical network has the form 

(v2 + ̂ ) no = o. 
The general solution of this equation may be written in the form 

I(t) = s cos (ωχΐ + βχ), 

where ωι = 1/y/LC. Thus, in the absence of resistance in a passive 
oscillatory circuit, there occur nondamping oscillations with the frequency 

ωι = 
1 

y/LC 

In the general case the value 1 /y/LC is called the natural frequency of the 
oscillatory loop S. 

We shall now return to the study of the oscillatory loop S and examine 
the case of a harmonic voltage source U(t). 
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Since the roots of polynomial (20) have negative real parts, it is possible 
to examine the steady-state process in the network S. We shall seek a 
solution by the method of complex amplitudes (see §12). Let U(t) = re%u>t 

be the complex harmonic oscillation with real amplitude r > 0. Then the 
right-hand side of equation (18) has the form 

pU(t) = p(reiut) = ϊνωβίωί. 

We have 
1 steady state w = && > 

where the complex amplitude σ of the current /steady state (0 is defined by 
the formula 

im r 
σ ~ iRta + (-Lo>2 + 1/C) " R + i (Leo - 1/Cco) 

[see §12, (A)]. Hence for the real amplitude we obtain 

« = M = r -
Λ / Α 2 + (Lo> - l/Cco)2 

From this formula it is clear that for a given amplitude r of the voltage 
source, the current amplitude s is maximum at the natural frequency 
ω = ωι = 1/y/LC of the loop S. For this frequency the amplitudes s and 
r are connected by the relation s = r /Ä, i.e., at this frequency the loop 
behaves as though only resistance were present. For the remaining fre
quencies the current amplitude s has a value smaller than r/R. This 
phenomenon is called resonance (compare the example in §12). The oscil
latory loop L, R, C resonates at its own natural frequency 1/y/LC. 

2. (Transformer.) A transformer consists of two windings, primary 
and secondary, placed on a single core. A source of variable voltage is 
connected to the primary winding, and to the secondary winding a load, 
for example, external resistance. Each winding has inductance and 
resistance (internal). Between the windings there exists a mutual induc
tion. Thus the transformer may be considered an electrical network 
consisting of two separate loops inductively connected. The first loop 
consists of three two-terminal elements: αφι is the inductance Lif biCi is 
the internal resistance Riy and a\Ci is the voltage source UaiCl = U(t). 
The second loop also consists of three two-terminal elements: a2b2 is the 
inductance L2, b2c2 is the internal resistance R2, and c2a2 is the load re
sistance R. In addition, there exists a mutual induction Maiblta2b2 = M 
(Fig. 20). By Kirchhofes first law we have 

Oi&i *biCi Ιθχα,ι 1 1 t ^a2&2 ^ί>2^2 *C2d2 * 2 · 
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Thus we have two loop currents, Ιχ, I2. By applying Kirchhofes second 
law we obtain 

LlVh + Mpl2 + R1I1 - U(t) = 0, 
L2pl2 + Mplx + R2I2 + RI2 = 0, 

or 
(L1p+R1)I1 + MpI2 = 17(0. 

Mplx + (L2p + R2 + R)I2 = 0. 

The determinant D(p) of this system has the form 

D(p) = {UL2 - M2)p2 + (L1R2 + LXR + Lrfjp + RX(R2 + R). 

By virtue of proposition (B) of §9 this polynomial is stable since L\L2 — 
M2 > 0. We shall examine the performance of a transformer in the case 
where the voltage U(t) varies harmonically, and we shall seek the steady-
state solution by the method of §12, (B). Let us set 

U(t) = ux^\ 

where U\ is a positive real number (the amplitude of the voltage applied 
to the primary winding). We shall seek the unknown functions Ιχ and I2 
in the form 

i = (Tie , i 2 = <r2e , 

where σι and σ2 are the complex amplitudes of the currents. 
The so-called ideal transformer, i.e., a transformer in which the values 

of Äi, R2 and L\L2 — M2 are negligible, is of the greatest theoretical 
interest. By not using these values in the equations for the values σχ and 
σ2, we obtain 

L\ · ζαχτΊ + M - ιωσ2 = ui, 
M · ιωσχ + (L2 · ίω + R)a2 = 0. 

Since M « yjL\L2, by subtracting from the second equation the first 
equation multiplied by y/L2/Lly we obtain 

R(T2 = ~ Λ/έ? Ul' 
Thus the amplitude u2 = Α|σ2| of the voltage drop across the load re
sistance R is 

W2 = v z i M i ; 
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the value y/L2/Li is called the transformer ratio. Thus if L2 > Li, we 
have a transformer which increases the voltage, 

^ > 1 ; 

if L2 < Li, we have a transformer which decreases the voltage, 

^ < 1 . 
Mi 

3. (Electrical filter.) We shall study an electrical network with four 
junctions a, 6, c, d and five two-terminal elements (Fig. 21), where 

ab is the inductance L, 
be is the inductance of the same quantity L, 
bd is the capacitance C, 
ad is the voltage source Uad(t) = £̂ (0> 
cd is the load resistance R. 

Let us set 
lab = Ily Ibc = ^2· 

Then by Kirchhofes first law we have 

Ibd = I\ — I2, led = ^2-

By Kirchhofes second law we have 

Uah + Ubc + Ucd + Uda = 0, 

or 
Ubc + Ucd + Udb = 0, 

Lph + Lpl2 + RI2 - U(t) = 0, 

Lpl2 +RI2 + ^- (J2 - I,) = 0. 
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Multiplying the second equation by p, we obtain the following system: 

Lph + (Lp + R)I2 = [7(0, - i /i + (Lp2 + Rp + £) I2 = 0. 

The determinant of this system has the form 

D(P) = L V +LAP2+ §£ + ! · 

By Theorem 6, the polynomial D(p) is stable. We shall now assume that 
JJ = bel<a\ where b is the real amplitude of the voltage (see §12). 

We shall seek unknown functions 7χ and I2 in the form 

h = a^"1, I2 = a2eiut, 

where ax and a2 are the complex amplitudes of the currents, i.e., we re
strict ourselves to finding a steady-state process. 

Determining the voltage drop UCd = RI2 across the load, we have 

b/C a2 — 
(B/C - LRU)*) + τω (2L/C - LW) 

from which we determine the amplitude a = |a2|Ä of the voltage UCd'> 

bR/C a = \a2\R — 
V(R/C - LRa>2)2 + a>2 (2L/C - Ηωψ 

For small values of the frequency ω we have a/b « 1; in other words, 
voltages of small frequency are easily transmitted through a filter with 
almost no change of amplitude. For large values of the frequency we have 

a/b « R/CL2o)z, 

so that high-frequency voltages almost fail to pass through, i.e., they are 
"filtered." 

14. The normal linear homogeneous system with constant coefficients. 
Here the system of equations 

n 

x% = Σ a)x*> i = 1y · · · > n> W 

with constant coefficients is solved. This system can be solved by the 
method of elimination (see §11, particularly Example 2). Here it is solved 
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by reduction of the matrix A = (a)) to the Jordan form. In the case 
when all eigenvalues of A are distinct, the task of reducing it to Jordan 
form, i.e., to diagonal form, is quite elementary. In the general case, 
however, the problem of reducing A to the Jordan form is one of the most 
complicated in linear algebra. In what follows we will use only those 
results of the present section which are based on the reduction of A to a 
diagonal form in the case of distinct eigenvalues. Results involving the 
reduction of A to the Jordan form in the general case will not be applied 
later. They are presented in propositions (C), (D), and (G) and in Theo
rem 28, but these propositions and Theorem 28 may be skipped without 
impairing our comprehension of subsequent material. 

Usually the reduction of A to the Jordan form for a solution of system 
(1) is effected by means of a linear transformation of the indeterminates 
x1, . . . , xn. This method is presented at the end of the present section 
under the title "Transformation of variables." A second method, also 
based on the reduction of A to the Jordan form, is presented in the first 
part of this section. 

In this section we shall make no distinction between a matrix A and the 
corresponding transformation A in the vector space x = (x1, . . . , xn), 
because the basis will not change. The only exception is the proof of propo
sition (F). 

The case of simple roots of the characteristic equation. (A) The system of 
differential equations (1) may be rewritten in vector form 

x = Ax. (2) 

Here A = (a}), and in place of the system of indeterminates x1, . . . , xn
y 

we introduce the indeterminate vector 

X = (X , . . . , X ) \ 

by the derivative x of x we mean the vector (x1, . . . , xn). If h is an eigen
vector of A with eigenvalues λ, i.e., if 

Ah = Xh 

[see §32, (B)], then the vector function x defined by the relation 

x = heu, 
is a solution of (2). 

This last proposition may be verified by substituting x = heu into (2). 

THEOREM 10. Let 
x = Ax (3) 

be a system of differential equations [see (A)] such that the eigenvalues 
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λι, . . . , λη of the matrix A are mutually distinct, and let 

hi , . . . , hn 

be the corresponding eigenvectors of this matrix. If we set 

Xi = h#V, i = 1, . . . , η, (4) 

then the vector function 

X = C 1 *! + · · · + CnXn, (5) 

where c1, . . . , cn are constants, is a solution of equation (3), and any 
solution of equation (3) is given by (5). 

Proof. By proposition (A) every function xt- is a solution of (3), and there
fore, by proposition (A) of §6, formula (5) always gives a solution of 
equation (3). We shall now prove that every solution of equation (3) can 
be written in the form (5). Let <p(t) be an arbitrary solution of equation (3). 
By Theorem 3 the solution <p(t) can be assumed to be defined on the entire 
line — oo < t < oo. Thus this solution is also defined at t = 0. Let us 
set φ(0) = x0. Let 

x0 = c^x + h cnhn 

be an expansion of the vector x0 in terms of the basis vectors hi , . . . , hn; 
the vectors hi , . . . , hn form a basis by virtue of proposition (C) of §32. 
Then the solution x, defined by formula (5), evidently satisfies the initial 
conditions 

x(0) = x0. 

The same initial conditions <p(0) = x0 are also satisfied by the solution 
φ(ί); thus, by the uniqueness theorem (see Theorem 2), x = <p{t), so that 
Theorem 10 is proved. 

In the case that the matrix (a}) defining equations (3) is real, we have 
the problem of separating the real solutions from all the solutions (5). 

(B) We shall assume that the matrix (a)) defining equation (3) is real, 
and we shall select vectors hi , . . . , hn in such a way that real vectors 
correspond to real eigenvalues and complex conjugate vectors to complex 
conjugate eigenvalues. Then in the system of solutions (4) to each pair of 
eigenvalues will correspond a real solution, and to every two complex 
conjugate eigenvalues will correspond complex conjugate solutions. There
fore, the solution (5) is real if and only if the constants attached to real 
solutions are real and the constants corresponding to complex conjugate 
solutions are conjugate. 

The validity of proposition (B) follows directly from proposition (D) 
of §7. 
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The general case. We turn now to the solution of the system (1) in the 
general case, where the matrix (a}) may have multiple eigenvalues. The 
analysis of this case rests upon an important and difficult-to-prove algebraic 
theorem concerning the reduction of a matrix to the Jordan form (see §34). 

(C) Let us write system (1) in vector form 

x = Ax (6) 
and let 

h i , . . . , It* 

be a certain basis set with eigenvalue λ [see §34, (A)] with respect to the 
matrix A, so that the relations 

A\i\ = Xhi, Ah2 = Xh2 + hi , . . . , Ahk = Xh*. + h&_i 

are satisfied. Let us introduce a sequence of vector functions, assuming that 

*'® = Jt!^lhi+ir=^lh* + ---+h» r=l,...,k. (7) 

We then find that the vector functions 

xr = ωΓ(*)βλί, r = 1, . . . , fc, (8) 

are solutions of equation (6), and in addition 

Xr(0) = hr. (9) 

Thus to every basis set of fc vectors corresponds a system of fc solutions. 
To prove that the vector functions (8) are solutions of (6), we shall state 

the following two identities concerning the vector functions (7): 

ώΓ(0 = ωΓ_ι(<), r = 1, . . . , fc; 
Αωτ(ί) = λ«Γ(<) + ωΓ_ι(0, r = 1, . . . , fc. 

In these relations ωο(0 is taken to equal 0. Both may be directly verified 
by elementary calculations. With the aid of these identities, it is imme
diately seen that the functions (8) are solutions of (6). Actually, we have 

±r(0 = <*r(t)eu + λωΓ(*)βλί = (« r - i (0 + λωΓ(0)βλ' 
= Avr{t)eu = Axr(t). 

We shall now turn to the formulation and proof of a theorem which 
gives the solution of (1) in the general case. 
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THEOREM 11. Let 
x = Ax (10) 

be the vector form of the system (1). By Theorem 28 (see §34) there 
exists a basis hi , . . . , hn, consisting of basis sets relative to the matrix 
A. Specifically, we shall assume that hi , . . . , h^, is a basis set with the 
eigenvalue λχ, that hjk1+i, . . . , Ι ι ^+^ is a basis set with the eigenvalue 
λ2, etc. By proposition (C), to each basis set corresponds a system of 
solutions, so that we can write the following solutions of equation (10): 

xi = hieXl i, . . . , xfcl = {(k^_\v hi + · ' · + hjfex) * M , 

h Xo t 
__,ν ι_^ * 1 + 1 β 9 

xfci+fc2 = I (fc2 _ ! ) | h*i+i H + bh+k2) e 2\ etc. 

Hence, the formula 
x = ^τχ + · · · + cnxn, (12) 

where c1, . . . , cn are constants, always gives a solution of equation (1), 
and every solution of (10) may be written in terms of (12). 

Thus the functions Xi, . . . , xn constitute the so-called fundamental 
system of solutions of equation (10). 

Proof. Since the functions Xi, . . . , xn are solutions of (10) [see (C)], 
then, by proposition (A) of §6, formula (12) always gives a solution of (10). 
We shall show that every solution of (10) may, by suitable choice of con
stants c1, . . . , cn, be written in form (12). Let <p{t) be an arbitrary solu
tion of (10). By Theorem 3, the solution <p{t) can be assumed to be defined 
on the entire line — oo < t < oo, so that the vector ^(0) = x0 is defined. 
Let us expand this vector in terms of the basis hx, . . . , h n : 

x0 = cxhi H h cnhn. 

If the constants c1, . . . , cn determined are now substituted into (12), we 
obtain a solution x(t), which satisfies the initial conditions 

x(0) = βχ
Χι(0) + · ■ · + cnxn(0) = c ^ ! + · · · + cnhn = x0 

[see (9)]. Thus the solutions <p(t) and x(t) have common initial values and 
therefore coincide. Theorem 11 is thus proved. 

It now remains to separate from the solutions given by (12) the real 
solutions in the case when the matrix (aj) is real. This is done in exactly 
the same manner as in the case of simple roots of the characteristic equa
tion. 

(11) 
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(D) Let us assume that the matrix (a}) which defines equation (10) is 
real. In this case we choose the basis hx, . . . , hn by the method specified 
in Theorem 28 (see §34) for the case that the matrix (a}) is real. With 
this choice of basis, there will be on the one hand, among the solutions (11) 
constructed in Theorem 11, real solutions and, on the other hand, pairs 
of complex conjugate solutions. Thus the solution (12) is real if and only 
if the constants corresponding to real solutions are real and the constants 
corresponding to complex conjugate solutions are complex conjugates. 
Proposition (D) now follows directly from (D) of §7. 

In conclusion it should be noted that the above results of the present 
section are closely connected with the results of §7 and §8, where we 
studied one nth-order homogeneous equation with constant coefficients. 
By the method of §4 such an equation can be written in the form of a 
normal system of n equations. Thus the results of §7 and §8 can be derived 
from the results of the present section. In addition it is found that the 
characteristic polynomial of the normal system obtained coincides with 
the characteristic polynomial of the initial equation. 

Transformation of variables. (E) Let us replace the indeterminates 

x1,..., xn (13) 

in the system (1), which is defined by the constant matrix A = (a}), by 
new indeterminates 

y\ ■ ■ ■, yn, (14) 
by setting 

if = £ stf, f=l,...,n, (15) 

where s{ are constant coefficients with a nonsingular matrix S = (ej). 
In terms of the new indeterminates our system may be written in the form 

ϋ* = Σ *&> i = 1, · . ., Λ, (16) 

where the matrix B = (b}) is obtained from A by the formula 

B = SAS'K (17) 

We shall now prove this. Differentiating relation (15) with respect to ty 
we obtain 

y> = Σ sW, j=\,...,n. (18) 

Thus, the components of the vector x = (x1, . . . , xn) are transformed in 
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the same way as the components of the vector x = (x1, .. . . , xn). Formula 
(17) follows directly from this transformation [see §32, (A)]. We shall 
carry out anew, however, the proof given in §32, (A). The relations (15) 
and (18) may be rewritten in the matrix form 

y = ASX, y = S±, 

so that we have 
y = st = SAx = SA · S ^ y , 

which proves formula (17). 
By a proper choice of the matrix S we can obtain the simplest form of B. 

Since the transformation (17) of the matrix A into the matrix B is effected 
by means of the matrix S, we can attain the Jordan form of the matrix B 
[see §34, (B)]. 

(F) If each eigenvalue 
Xi, . . . , Xn 

of the matrix A of the system (1) is distinct, then the linear transforma
tion (15) can be chosen in such a way that (16) takes the form 

yk = \kyk
} k = 1, . . . , n. (19) 

If, in addition, the matrix A is real so that together with every complex 
eigenvalue \k in the sequence λ1? . . . , λη there appears the complex conju
gate λι = A*, and if the variables (13) are real, then the transformation (15) 
can be chosen so that to every real eigenvalue Xy corresponds a real variable 
y\ and to the pair of complex conjugate eigenvalues X& and λ̂  correspond 
the complex conjugate variables yk and yl = ljk. Thus to the conjugate 
eigenvalues correspond the conjugate equations 

yk = \ky\ Ψ = hVk· (20) 
Let 

Xfc = M* + ivk, yk = ? + ivk, (21) 

where μ ,̂ vkl £fc, vk are real numbers. Then the pair of conjugate equa
tions (20) can be replaced by a pair of real equations 

t = μ^ ~ nvk, ik = vhih + AIM*. (22) 

Carrying out a similar substitution for every pair of complex conjugate 
eigenvalues, we shall be able to substitute for the system of real variables 
(13) a new system of real variables, whose equation has partly the form 
(19) (for real Xy) and partly the form (22) (for pairs of complex conjugate 
eigenvalues). 
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To prove proposition (F) in the space R of vectors x = (a;1, . . . , xn), 
we make the matrix A correspond with the linear transformation A (see 
§32), and we denote by h^ the eigenvector of the transformation A with 
eigenvalue λ&. As a basis in R we shall now take the vectors 

hi , . . . , hn, (23) 

and we denote the coordinates of the vector x corresponding to this basis 
by yl, . · · , yn> Thus we shall obtain the linear transformation (15). In 
the new system of coordinates the matrix B corresponds to the transforma
tion A. Finally, since, the matrix B has obviously a diagonal form with 
the numbers λχ,. . . , λΛ in the diagonal, the system (16) takes the form (19). 

Now if the matrix A is real, then to each real eigenvalue \j will corre
spond the real vector hy, and to a pair of complex conjugate eigenvalues 
Xfc and λι = \k, will correspond a pair of complex conjugate eigenvectors 
hfc and hi = hk. An arbitrary vector x in the new coordinate system 
may be written in the form 

If it is real then the coefficients of real vectors must be real and the 
coefficients of complex conjugate vectors must be complex conjugate 
[see §7, (D)]. Thus a real variable y3 corresponds to every real eigenvalue 
Xy, and the complex conjugate values yk and yl = yk correspond to the 
pair of complex conjugate eigenvalues \k and \ι = \k. 

We shall write equation (20), after substituting in it the values \k and 
yk from (21), for the transition from a pair of complex conjugate equa
tions (20) to a pair of real equations (22). We obtain 

? + nk = (Mfc + tV*)(t* + iV
k) = μ^ - VkV

k + i(vkltk + μ^). 

By equating separately the real and imaginary parts of this relation, we 
obtain the system of equations (22), and proposition (F) is proved. 

The system of equations (19) has the obvious solution 

yk = cke^\ k = 1, . . . , n, 

but in order to obtain a solution of the original system (3) it is necessary 
to go from the indeterminates (14) to the indeterminates (13), and for this 
transition we must know the eigenvectors (23) of the matrix A [see (24)]. 
Thus proposition (F) is equivalent to Theorem 10. 

For the solution of (1) in the general case, the reduction of the matrix A 
to the Jordan form can be used. The proposition (G) for this case is 
equivalent to Theorem 11. 
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(G) Let the matrix A of the system (1) be arbitrary. We shall select 
the transformation (15) in such a way that the matrix B has the Jordan 
form (see §34). Let λ be one of the eigenvalues of matrix A and let k be 
the dimension of one of the Jordan cells of B with eigenvalue λ. We shall 
assume that this cell occupies the first k rows. The system of equations 
corresponding to this cell has the form 

V1 = Xt/1 + y\ 
y2 = W + y\ 

yk~l = \yk~l + y\ 
yk = Xy*. 

To every other Jordan cell of B corresponds a similar system of equations 
which is easy to solve. 

EXAMPLES 

1. The application of the method presented in this section to the solu
tion of system (1) requires the determination of the basis hi , . . . , hn of 
the vector space which consists of basis sets (see Theorem 11). This 
determination itself presents a certain algebraic problem. By using the 
results of this section, we shall show how the system (1) can be solved by 
the method of undetermined coefficients without finding the basis which is 
composed of basis sets. Let λ be a certain eigenvalue of the matrix (aj). 
To this eigenvalue, generally speaking, correspond several basis sets con
tained in the basis hi , . . . , hn ; let k be the longest of the basis sets cor
responding to the eigenvalue λ. By Theorem 11, each of the solutions 
corresponding to the eigenvalue λ can be written in the form 

xl = f(t)eu, i = 1, . . . , n , (25) 

where fl(t) is a polynomial of degree < k — 1. Thus, substituting into 
system (1) a solution in the form (25) and assuming that the coefficients 
of the polynomials fl(t), i — 1, . . . , n, are unknown constants, we can, 
by using the method of undetermined coefficients, find all solutions of (1) 
corresponding to the eigenvalue λ. In order to solve the system (1) by this 
method it is not necessary to know the basis sets corresponding to the 
eigenvalue λ; it is necessary to know only the lengths of these basis sets. 
Determination of the lengths is a simpler algebraic problem than reduction 
to the Jordan form; it is solved by the theory of elementary divisors of 
matrices, which pertains to linear algebra. The theory of elementary 
divisors is not used in this book. 
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2. We shall now show how to solve system (1) by the method of elimina
tion presented in §11. To apply the method of elimination, we shall write 
(1) in the form 

Σ L)(p)xj = 0, 
J = l 

where 
Lj(p) = a} — p b). 

The determinant D(p) of the matrix (L)(p)) in this case is a characteristic 
polynomial of the matrix (a}). Let λ be a certain root of D(p) or, what is 
the same thing, an eigenvalue of the matrix (a}). The multiplicity of λ 
will be denoted here by I. By proposition (C) of §11 every solution of (1) 
corresponding to the root λ is to be found in the form 

xi = g\t)eu, i= 1, . . . , n, 

where the degree of the polynomial gl(t) does not exceed I — 1. If we 
compare the method presented in this example with that in Example 1, 
we see that the whole difference lies in the determination of the maximal 
degree of the polynomials. The method of Example 1 gives a more accurate 
determination of the degree of the polynomials, since the number fc, 
generally speaking, is smaller than the number Z. Indeed, the sum of all 
lengths of basis sets corresponding to λ is equal to I. Thus the equality 
k = I can hold only when there is only one basis set corresponding to the 
eigenvalue λ. 

15. Autonomous systems of differential equations and their phase 
spaces. We shall give here a geometrical interpretation of an autonomous 
system of equations in the form of the phase space of this system. This 
interpretation differs essentially from the geometrical interpretation of 
the system of equations in §1 and should, therefore, more correctly be called 
a kinematic interpretation, since to every solution of its system of equations 
corresponds not a curve in a space, but the motion of a point along the 
curve. The kinematic interpretation (the phase space) is in certain respects 
more expressive than the geometrical (the system of integral curves). 

Autonomous systems. A system of ordinary differential equations is 
called autonomous if it does not explicitly contain the independent variable 
t (or, as we shall call it, the time). This means that the law of variation 
of the unknown functions which are described by the system of equations 
does not change with time, as is usually the case with physical laws. It is 
very easy to prove that if 

xl = φ\ί), i= 1, . . . , n, 
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is a solution of a certain autonomous system of equations, then 

xl = <p*(t) = φ\ί + c), i = 1, . . . , rc, 

where c is a constant, is also a solution of the same autonomous system of 
equations. We shall carry out the proof of this fact by an example of a 
normal autonomous system of equations. 

(A) Let 
x* = f(x\...,xn)} t = l , . . . , n , (1) 

be an autonomous normal system of nth-order equations and 

* = / « 

its vector notation. The autonomy of system (1) consists of the fact that 
the functions fix1, . . . , xn), i = 1, . . . , n, are functions of the variables 
.τ1, . . . ,xn and do not depend on the time t. We shall assume that the 
functions fx(x1

i . . . , xn) are defined in a certain domain Δ of the n-dimen-
sional space where x , . . . , x are the coordinates of a point. We shall 
assume further that /Xz1 , . . . , xn) and their first-order partial derivatives 
are continuous in the domain Δ. Thus, if 

xi = φ\ί\ i = 1, . . . , n, (2) 

is a solution of (1), then 

x{ = <pi(f) = φ\ι + c ) , i = 1, . . . , n, (3) 

is also a solution of (1). It is evident that if the solution (2) has as a 
maximal interval of existence the interval πΐ\ < t < m2, then the solu
tion (3) has the maximal interval 

mi — c < t < m2 — c. 

From the differentiation formula for a composite function, we have the 
relation 

φί(ί) = φ\ί + c), i = 1, . . . , n. (4) 
Indeed, 

*® = it ̂  = it ̂ +c) = whj **+c> ·dJL^ 
= <p\t + C) ■ 1 = φ\ΐ + C). 

We shall now prove that (3) is a solution of the system (1). Since (2) is 
a solution, we have the identities 

*'"(0 = / V ( 0 , · · · , *"(«)), i= l,...,n. 
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Replacing t in these identities by t + c we obtain 

φ\ΐ + c) = /V(* + *) , . . . , *n(* + c)), t = 1, . . ., n. 
Combining this with (4) and (3), we have 

**(o = *'(« + c) = /V(* + c),. . . , A * + e)) = r(^i(o,..., **(<)). 
We shall now turn to the kinematic interpretation of the solutions of 

system (1). Formally we shall speak about an interpretation in n-dimen-
sional space, but for the sake of clarity it is reasonable to imagine the case 
of a plane (n = 2). 

(B) To every solution 

x* = <p\t), i = 1, . . . , n, (5) 

of the autonomous system (1) we make correspond the motion of a point 
in n-dimensional space defined by equations (5), where x , . . . , x are the 
coordinates of the point in space and t is the time. In the course of its 
motion the point describes a curve known as the trajectory of the motion. 
If we associate with the solution (5) not the process of motion, but the 
trajectory of the motion of the point, then we shall obtain a less complete 
picture of the solution, since it is also desirable to indicate the direction 
of the motion on the trajectory. Thus, if there is another solution 

x* = φ\ή, i = 1, . . . , n, (6) 

in addition to (5), then the trajectories corresponding to these solutions 
either do not intersect in the space or else they coincide. That is, if the 
trajectories have even one common point, i.e., 

Ah) = At2), i = 1, · · · , n, (7) 
then 

ψ*(ί) = <p*(t + c), where c = h - *2. (8) 

These last equalities show that the trajectories described by the first and 
second solutions coincide, but the first solution describes the same trajec
tory as the second with the time "delay" c. If the point corresponding to 
the first solution has reached a certain position on the trajectory at instant 
t + c, then the point corresponding to the second solution has already been 
in this position at the instant t. 

In order to derive (8) from (7), we shall examine the solution 

<pl(t) = <pl(t + c) (9) 
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along with (5) [see (A)]. Equations (7), for c = ti —- t2, yields the equality 

<fkt2) = <P% + c) = φ%) = ψ%), i = 1, . . . , n. 

Thus, the solutions (6) and (9) of the system (1) have common initial 
conditions (namely, their values at the instant t2), and therefore by the 
uniqueness theorem they must coincide, so that we have 

t\0 = <pi(t) = <p\t + c), i = 1, . . . , n. 

States of equilibrium and closed trajectories. We pose the question of 
whether a trajectory representing a solution of the system can intersect 
itself. 

(C) Let 
xi = φ\1), i = 1, . . . , n, (10) 

be a certain solution of the system (1) defined on a maximal interval 
mi < t < m2. We shall assume that the equalities 

<P%) = φ%), t = l , . . . , n , h* t2, (11) 

are valid, where t\ and t2, of course, belong to the interval τπχ < t < m2. 
It then turns out that m\ = — oo, ra2 = +oo [i.e., the maximum interval 
of existence for the solution (10) is the entire line] and that the following 
two mutually exclusive cases are possible. 

1. For all values of t the equality 

φ\ί) = a\ i = 1, . . . , n, 

is valid, where (a1, a2, . . . , an) is a point of the domain Δ which does not 
depend on t. Thus in this case the point (φ1(ή) . . . , <pn(t)) actually does 
not move as t varies but remains fixed. In this case the solution (10) 
itself with the point (a1, . . . , an) is called a state of equilibrium of the 
system (1). 

2. There exists a positive number T such that for arbitrary t, the 
equalities 

<p\t +T) = <p\t), i = 1, . . . , n, 

are valid, but for \τ\ — τ2\ < T and for at least one i = 1, . . . , n, the 
inequality 

φ\τλ) * φ\τ2) 

is valid. In this case the solution (10) is called periodic with period T, and 
the trajectory described by (10) is called a closed trajectory or a cycle. 
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First of all, we shall show that the maximal interval of existence of 
solution (10) is the entire straight line. As was noted in proposition (B), 
the identities 

<p\t + c) = <p\t\ i = 1, . . . , n, c = h - t 2 , (12) 

follow from equality (11). Since by this equality the interval m\ — c < 
t < m2 — c coincides with the interval m\ < t < m2, we have m\ = 
— GC,m,2 = + o o . 

Every number c for which (12) is satisfied will be called a period of the 
solution (10); the set of all periods of the solution (1) is designated by F, 
which is a certain set of numbers. We shall establish some of its properties. 
Substituting t — c for t in (12), we obtain <p%(t) — (pl(t — c). Thus, if c 
is a period, then — c is also a period. Let us assume that Ci and c2 are 
periods, i.e., that 

<Pl(t + ci) = φ\ϊ), φ\1 + c2) = <p\t); i = 1, . . . , n. 

Then 

<p\(t + C2) + C l ) = φ\1 + C2) = φ\ί), i = 1, . . . , U. 

Thus if Ci and c2 are periods, then Ci + c2 is also a period. Let us assume 
that Ci, c2, . . . , cm, . . . is a sequence of periods which converges to a 
certain number Co; then we have 

φ\ί + cm) = <p\t); i = 1, . . . , n, m = 1, 2, . . . . 

Since the functions φ%{() are continuous, then for m —> oc we have 

At + c0) = ^(0, 
i.e., we see that c0 is also a period, because the set F is closed. 

Since the number c in (12) is distinct from zero (t\ ^ t2), the set F con
tains numbers distinct from zero. From the properties of the set F which 
have been established it is easily seen that there exist only two possibilities: 
(1) the set F coincides with the set of all real numbers; (2) in the set F 
there is a minimal positive number T7, such that F consists of all integer 
multiples of the number T. Let us prove that there are actually only these 
two possibilities. Since the set F contains the number — c whenever it 
contains the number c, and since in F there are numbers different from 
zero, there are positive numbers in F. 

Let us assume that there is no least positive number in F, i.e., that for 
every positive number € there is a positive period c < €. From the above 
properties of the set F it follows, since c is a period, that all numbers mc, 
where m is an integer, are also periods. Since c < e, then for an arbitrary 
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real number c0 it is possible to find an integer m such that |c0 — mc\ < e. 
Thus an arbitrary number c0 is a limit point of the set F, and therefore, 
in view of the fact that set F is closed, this set coincides with the set of all 
real numbers. 

Let us now assume that F is not the set of all real numbers. By what 
has been proved, there then exists in F a least positive number T. Let c be 
an arbitrary period. Then it is possible to select an integer m such that 
\c — mT\ < T. Let us assume that c 9^ mT; then \c — mT\ is a period 
distinct from zero; but this is impossible since \c — mT\ < T, which 
contradicts the minimal character of the number T. It is thus proved that 
every number c from F can be written in the form c = mT, where m is 
an integer. 

Now it is easy to verify that, if F is the set of all real numbers, then 
case (1) occurs, and if F is not the set of all real numbers, then case (2) 
occurs. Thus proposition (C) is proved. 

Proposition (C) can be formulated briefly by saying that there exist 
three kinds of trajectories: (1) those of the state of equilibrium; (2) periodic 
trajectories (cycles); and (3) nonintersecting trajectories. It is natural to 
take the last case as the "most general." 

From Theorem 2 it follows that a trajectory representing a solution of 
the system passes through every point of the domain of definition of the sys
tem (1). Thus, the entire domain Δ is filled with trajectories, and in accord
ance with (B) these trajectories do not intersect each other in pairs. Those 
trajectories which do not intersect are of particular interest; they represent 
either states of equilibrium or cycles, and are quite important. 

This is the kinematic interpretation of solutions of an autonomous 
system of equations. The system of equations itself also admits a geo
metric interpretation. 

Phase spaces. (D) Since the autonomous system of equations (1) is 
defined in the domain Δ, each point (XQ, . . . , XQ) of the domain Δ corre
sponds to a sequence of n numbers, namely the sequence 

f{xl,...,xl),...,fn{xl,...,xl). 

These numbers can be thought of as components of a vector f (x\, . . . , XQ) 
in an n-dimensional space emanating from the point (xl, · · · , #o)· Thus the 
autonomous system gives rise to a geometric picture, a vector field defined 
in the domain Δ. The vector f (XQ, · · · , #o) is defined at every point 
(.To, · · · , #S) of Δ, starting from this point. The connection between the 
geometrical interpretation of the solutions and the geometrical interpreta
tion of the system of equations itself is given by the following. Let 
(.To, . . . , XQ) be an arbitrary point of Δ. In the geometrical interpretation 
of the system of equations the vector f (xl, . . . , χξ) corresponds to the 
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point from which it starts. Further, by Theorem 2 there exists a solution 
xl = <pl(t) of (1) which satisfies the initial conditions 

tp\tQ) = x
l
0y i = 1, . . . , n. 

According to the kinematic interpretation, the solution xl = <pl(t) cor
responds in the space to the motion of a point which describes a trajectory 
which, at the instant t = to, passes through the point (xl, . . . , XQ) in the 
space. Thus the vector velocity of the point which describes the solution 
xl = φι(ή at the instant of its passage through the point (xl, . . . , xn) 
coincides with the vector i(xl, . . . , XQ). It is just this coincidence which 
is expressed by the system of equations (1) for 

x — XQ, i = 1, . . . , n; t = t0. 

The n-dimensional space, in which solutions of autonomous system (1) 
are interpreted in the form of trajectories and the autonomous system 
(1) itself in the form of a vector field, is called the phase space of the system 
(1). The trajectories in this space are called the phase trajectories, and the 
vectors f (xl, . . . , XQ) are called the phase velocities. The connection be
tween the two interpretations consists in the fact that the velocity of the 
motion of a point along a trajectory at each instant coincides with the 
phase velocity given at that point of the space where the moving point is 
located at that instant. 

Let us now examine states of equilibrium from the point of view of phase 
velocities. 

(E) In order that the point (a1, . . . , an) of the domain Δ be a state of 
equilibrium of the system (1), i.e., that xl = <pl(t) be a solution of the 
system for which 

<Pl(t) ^a\ i = 1, . . . , n, (13) 

it is necessary and sufficient that the phase velocity f(al, . . . , an) at 
(a1, . . . , an) be equal to zero. Thus to find all states of equilibrium of (1) 
it is necessary to solve the system of equations 

f(a\ ...,an) = 0, i = 1, . . . , n. 

This system is not a system of differential equations, but rather a system 
of finite (or algebraic) equations since it does not include derivatives. 

To prove proposition (E), we shall assume that (a1, . . . , an) is a state 
of equilibrium, i.e., that there exists a solution xl — φι(ί) for which the 
relations (13) are satisfied, and we shall substitute this solution into (1). 
Since the derivative of a constant is zero, the substitution yields 

/V,.. . ,a") = !**(*) = I a* = 0. 
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Thus the phase velocity vector f(ax, . . . , an) actually vanishes at the 
point (a1, . . . , an). Let us assume that, conversely, the phase velocity 
vector f(a1, . . . , an) vanishes at the point (a1, . . . , an), i.e., that 

f{a\ . . . , a*) = 0, i = 1, . . . , n, 

and we shall show that in this case the equalities (13) determine a solution 
of (1). Substitution gives 

Φ\ΐ) = f(a\ . . . , an), i = 1, · · · , n; 

these equalities are satisfied, since on the left we have the derivative of a 
constant and on the right, zero. 

EXAMPLES 

1. (Compare Example 3 in §2). We shall study the autonomous first-
order differential equation 

x = f(x), (14) 

where f(x) and its derivative are continuous over the entire line P where x 
is allowed to vary. We shall assume in addition that the zeros of f(x) or, 
what is the same thing, the states of equilibrium of equation (14) do not 
have limit points. Under this hypothesis the states of equilibrium divide 
the straight line P into a system Σ of intervals. Each interval (a, b) of Σ 
has the property that the function f(x) does not vanish on it and that 
each of its endpoints, a or b1 is either a zero of the function/(x), or is equal 
to dz oo. Thus Σ consists of a finite or countable number of finite intervals 
and not more than two semi-infinite intervals, or consists only of the infinite 
interval (— oo, oo). Let (a, b) be a certain interval of Σ, x0 a point of this 
interval, x = <p(t) a solution of equation (14) with initial values 0, Xoy and 
rrti < t < m,2 the maximal interval of existence of the solution <p(t). To 
be definite we shall assume that f(xo) > 0, so that 

a < <p(t) < b for m\ < t < m2y (15) 

lim <p(t) = a, lim <p(t) — b. (16) 
t—>7tl\ t—>Wl2 

Further, if either number a or b is finite, then the number m\ or ra2, 
respectively, is infinite. Thus (Fig. 22) every interval (a, b) represents one 
unique phase trajectory of equation (14). 

We shall prove relations (15), (16). From the hypothesis that f(x0) > 0 
it follows that the function f(x) is positive on the interval (a, &), and there
fore every point of this interval describing a phase trajectory moves from 
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FIGURE 23 

left to right. Thus with increasing t the point <p(t) can leave the interval 
(a, b) only by passing over the right-hand endpoint 6. Let us assume that 
this takes place for some t = t\) then at t = ti, we have φ{ίχ) = 6, 
which creates the impossible situation that the two different trajectories 
x = φ(ι) and x = b intersect. In exactly the same way we can prove that 
the point <p(t) cannot leave interval (a, b) for decreasing t. Thus (15) is 
proved. 

Let us now assume that l i m ^ ^ <p(t) = c < b, and let ψ(ί) be a solution 
of (14) with the initial values 0, c. Since f(c) > 0, then for some negative 
value of t2 we have ψ(^) < c, but this means that two different tra
jectories <p(t) and \//(t) intersect, which is impossible. Thus it is proved 
that lim,.™ <p(t) = b. The relation 

lim = φ(ΐ) — a 

is proved in exactly the same way. 
Let us assume, finally, that b < oo, and show that under this assump

tion ra2 = oo. Let us assume the contrary, that is, m^ < oo. Let us then 
define a function x(t) by setting x(t) = <p(t) for mi < t < m2, and 
x(t) = b for t > m2. It is evident that the function X(t) is continuous and 
satisfies equation (14), but this is impossible since two different trajectories 
x(t) and x = b would then intersect. This contradiction shows that 
m2 = +oo. In exactly the same way it can be proved that for a > — oo 
we have πΐχ = — oo. 

Let b be an arbitrary state of equilibrium of equation (14) and let 
(a, b) and (6, c) be the two intervals of Σ adjoining it (on the left and right, 
respectively). Each of the intervals (a, b) and (6, c) represents one tra
jectory. If both points describing the trajectories (a, b) and (6, c) ap
proach (with increasing t) the state of equilibrium 6, then the state of 
equilibrium b is called stable [Fig. 23(a)]. If both points describing the 
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trajectories (a, b) and (6, c) recede from the point 6, then the state of 
equilibrium b is called unstable [Fig. 23(b)]. If along one of the trajectories 
the point approaches and along the other it recedes, then the state of 
equilibrium b is called semistable [Fig. 23(c)]. In order that a state of 
equilibrium b be stable, it is necessary and sufficient that the function f(x) 
be positive on the interval (a, b) and negative on the interval (6, c). For 
state of equilibrium b to be unstable, it is necessary and sufficient that the 
function f(x) be negative on the interval (a, b) and positive on the interval 
(6, c). For a state of equilibrium b to be semistable, it is necessary and 
sufficient that the function f(x) have the same sign on both of the intervals 
(a, b) and (b, c). 

Let us assume that f(b) ^ 0; then the sign of function f(x) in the neigh
borhood of the point b is the same as the sign of the quantity f(b) (x — b). 
Hence it follows that for /(&) < 0 the state of equilibrium b of equation 
(14) is stable and for f(b) > 0 it is unstable. 

2. We shall study the equation 

* = /(*), (17) 

where f(x) is a periodic function with a continuous first derivative. To be 
definite we shall assume that its period is equal to 2π. Everything said in 
Example 1 concerning equation (14) remains valid for equation (17) as 
well, since equation (17) is a particular case of equation (14). However, 
in order to take into account the specific character of equation (17) [the 
periodicity of function /(#)], we shall assume that the phase space of 
equation (17) is not a straight line but a circle K of radius one on which we 
choose a reference point 0 and a direction of motion (for example, counter
clockwise). To every number x we make correspond the point £ of the 
circle K by marking counterclockwise from the reference point an arc of 
length x (Fig. 24). Then to all numbers x + 21CT, where k is an integer, 
there corresponds a unique point ξ on the circumference. Since 

/ ( * + 2Ä;7r) = / ( * ) , 

it is possible to set /(£) = /(x), and the function / is then defined on the 
circumference K. Equation (17) now defines the motion of point ξ along 
the circumference K. If x(t) is a certain solution of equation (17), then 
the point £(£) corresponding to the number x(t) moves along circumference 
K. If a is a point on K such that f(a) = 0, then there exists a solution 
x{t) of (17) such that £(0 = a and a is a state of equilibrium of (17). Let 
us assume for simplicity that the state of equilibrium of (17) on K has no 
limit points; then there is only a finite number of points or none at all 
(Fig. 25). States of equilibrium divide the circumference into a finite 
system Σ of intervals. If there are no states of equilibrium at all, then the 
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system Σ contains only one "interval" (the circumference). If there is only 
one state of equilibrium a, then the system Σ also contains only one 
interval, which consists of all points of K with the exception of the point a. 
In the first case the interval has no endpoints at all; in the second case 
both its endpoints coincide. Let / be a certain interval of Σ and x(t) a 
certain solution of (17) with initial values 0, x0, where £0 is a point of / . 
The solution x(t) is always defined for all values of t, and the point £(t) 
belongs to the interval / . If the interval / has endpoints (one or two), 
then the point traverses / in a fixed direction, the solution £(£) passing 
once through each point of / . If the interval / coincides with the entire 
circumference, then after leaving the position £0> the point will return to 
it after a certain time T, so that £(0) = %(T). In this case the motion 
ξ(Τ) depends periodically with period T on the number t. The numerical 
solution x(t) of equation (17) corresponding to the motion £(t) satisfies 
the condition 

x(t + T) = x(t) ± 2?r. 

From this example it is apparent that it is not always appropriate to 
consider a euclidean coordinate space as the phase space of a system of 
equations; sometimes it is necessary to consider a more complex geo
metrical configuration. In Example 3 below we shall encounter this cir
cumstance in a more complex situation than in this example. 

3. We shall investigate the system of equations 

xi = fi(x\x2)) i= 1,2, (18) 

where the function fl(xl, x2) is periodic of period 27Γ in each of its 
arguments: 

fix1 + 2kw, x2 + 2lw) = f\x\ x2), i = 1, 2. 

As always, we shall assume that the functions fix1, x2) are continuous and 
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FIGURE 26 

have continuous first-order partial derivatives. In view of the periodicity 
of the functions fl(xl, x2) it is reasonable to assume that the phase space 
of (18) is not a plane but a more complex geometrical configuration, 
namely, the surface of a torus or, as it is called, a torus (Fig. 26). We shall 
describe this surface. 

In a three-dimensional euclidean space with cartesian coordinates 
x, y, z, we take in the xz-plane the circle K with a radius of one and with 
its center at the point (2, 0, 0). We take as origin on the circumference the 
point with coordinates (3, 0, 0). Then to every number xl we make 
correspond the point ξ1 of K (see Example 2). We now rotate the xz-plane 
about the 2-axis in the (x, y, z) space. The surface P described by the cir
cumference K in this rotation is a torus. Let ξ1 be some point of K. As a 
result of rotating the xz-plane through the angle x2 measured in radians, the 
point ξ1 goes over into a certain point p of the torus P (Fig. 26). If the 
rotation is made not through the angle x2 but through the angle x2 + 2kw, 
then we arrive at the same point p on the torus P. Thus the point p on 
the torus P is defined uniquely by two cyclic coordinates £*, ξ2, and to each 
pair of cyclic coordinates f1, £2 corresponds one well-defined point on the 
torus. Thus we see that the functions/Xx1, x2) can be considered as defined 
not on a plane, but on the surface of the torus P: 

m\?) = f(x\x2)· 
Now let xl{t), x2(t) be a certain solution of system (18). If we make the 
correspondence between the numbers xx(t) and x2(t) and the cyclic co
ordinates £x(0 and ξ2(ί), we obtain the point ξ1^), ί2(ί) on the torus P . 
Thus, every solution xl{t), x2(t) of (18) can be represented by the motion 
of a point on the torus, the law of motion at each instant being defined by 
that point ^(t), %2(t) of the torus through which the trajectory passes at 
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that instant. This is explained by the fact that functions /*(£*, £2) are 
defined on the torus. Thus the entire torus P is found to be covered by 
trajectories, each two of which either do not intersect, or else coincide. 
In particular, if a trajectory intersects itself, it is then either closed or it is 
a state of equilibrium. 

The representation of phase trajectories of (18) not on a plane but on 
the surface of a torus reflects the specific property of the system (18) 
(periodicity of the functions fl) and is a convenient means of studying it. 

16. The phase plane of a linear homogeneous system with constant 
coefficients. In this section we shall construct phase trajectories on the 
phase plane of the system 

• 1 ^ . l ^ » l i ^ .1^-2 
X = Ü\X -f- d 2 £ , 
.2 2 1 i 2 2 

x = a\x + Ü2X j 
or, in vector form, 

x = A(x), 

with constant real coefficients a}. Here we shall have to investigate several 
different cases, since the phase picture of the trajectories of a system 
depends essentially on the values of the coefficients. 

It should be noted that the origin (0, 0) is always a state of equilibrium 
of the system (1). This state of equilibrium is unique if and only if the 
determinant of the matrix (a}) is different from zero, or, what is the same 
thing, if both eigenvalues of this matrix are different from zero. 

Let us assume that the eigenvalues of matrix A are real, distinct, and 
nonzero. Then, according to the results of §14 (Theorem 10), any real 
solution of (2) can be written in the form 

x = c 1 ^ ^ + c2h2e^\ (3) 

where hi and h2 are real, linearly independent eigenvectors of the matrix 
A, λχ and λ2 are its real eigenvalues, and c1 and c2 are real constants. We 
shall expand (3) in terms of the basis vectors (hi, h2) by setting 

x = f ̂ ι + £2h2, (4) 

whence we have 
p = c i e M, ξ2 = cV»'. (5) 

Generally speaking, the coordinates ξ1, ξ2 on a phase plane P of the sys
tem (1) are not rectangular; therefore, we shall make an affine mapping 
of the phase plane P onto an auxiliary plane P * in such a way that the 
vectors hi , h2 are transformed into mutually orthogonal unit vectors of 

(1) 

(2) 
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FIGURE 27 

the plane directed along the axis of abscissas and the axis of ordinates, 
respectively (Fig. 27). The point x = i^hx + ?2h2 of the plane P is trans
formed by this mapping into a point with rectangular cartesian coordinates 
ξ1, i·2 in the plane P*. Thus the trajectory defined by the parametric 
equations (5) in the plane P will be mapped into a trajectory (which we 
shall also call phase trajectory) defined by the same equations in the rec
tangular coordinates of the plane P*. We shall first plot the trajectories 
defined by the equations (5) in P*, and then we shall map them back 
into P. 

Together with phase trajectory (5) in P* there is a trajectory defined by 
the equations , , . . _ _ . . 

f i = cVi ' , ξ2 = - c W , (6) 

and also a trajectory defined by the equations 

f i = - c V i ' , ί2 = cV*'. (7) 
The trajectory (6) is obtained from trajectory (5) by a mirror reflection in 
the axis of abscissas, and trajectory (7) is obtained by reflexion in the axis 
of ordinates. Thus the two mirror images shown leave invariant the picture 
of the trajectories in P*. From this it is evident that, if trajectories are 
drawn in the first quadrant, then it is easy to imagine the entire phase 
picture in the plane P*. 

We shall note that for c1 = c2 = 0 we obtain the motion of a point 
which describes the state of equilibrium (0, 0). For c2 = 0, c1 > 0 we 
obtain a motion which describes the positive semiaxis of abscissas; for 
c1 = 0, c2 > 0 we obtain a motion which describes the positive semiaxis 
of ordinates. If λχ < 0, then the motion which describes the positive 
semiaxis of abscissas proceeds toward the origin; if λχ > 0, then this mo
tion is directed away from the origin. In the first case the point approaches 
the origin as closely as we please; in the second, it recedes without bound 
toward infinity. The same is true also of the motion which describes the 
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FIGURE 28 

positive semiaxis of ordinates. If C\ and c2 are positive, then the motion 
of the point occurs within the first quadrant, without approaching the 
boundary. 

We shall carry out separately a further, more detailed description of the 
phase plane for several cases, depending on the signs of the numbers 
λχ and λ2. 

(A) Node, Let us assume that both numbers, λχ and λ2, are different 
from zero and have the same sign, and that 

< IX-2|· (8) 

We shall investigate first the case when 

λι < 0, λ2 < 0. 

Under these hypotheses the motion along the positive semiaxis of abscissas 
is directed toward the origin, just as is the motion along the positive semi-
axis of ordinates. Further, the motion along an arbitrary trajectory inside 
the first quadrant consists of an asymptotic approach of the point toward 
the origin, the trajectory in this case being tangent to the axis of abscissas 
at the origin. For t —> — oo, the point moves so that its abscissa and 
ordinate increase without bound, but the increase of the ordinate is more 
rapid than that of the abscissa, i.e., the motion goes in the direction of the 
axis of ordinates. This phase picture is called a stable node [Fig. 28, (a)]. 
If the inequalities 

λι > 0, λ2 > 0 

together with inequality (8) are fulfilled, then the trajectories remain as 
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FIGURE 29 

before, but the motion along them is in the opposite direction, and we have 
an unstable node [Fig. 28, (b)]. 

(B) Saddle point. Let us assume that the numbers λχ and λ2 have oppo
site signs. To be definite we assume that 

Xi < 0 < λ2. 

In this case the motion along the positive semiaxis of abscissas is directed 
toward the origin, and the motion along the positive semiaxis of ordinates 
is directed away from the origin. The forms of the trajectories lying inside 
the first quadrant resemble hyperbolas and motions along these trajectories 
proceed toward the origin along the axis of abscissas and away from the 
origin along the axis of ordinates. This phase picture is called a saddle 
point, or a saddle. 

Figures 28(a), 28(b), and 29 give a picture of trajectories on an auxiliary 
phase plane P*. The distribution of trajectories on the phase plane P is 
obtained by means of an affine transformation and depends on the position 
of the eigenvectors (see, for example, Figs. 30 and 31). 

We shall now investigate the case when the eigenvalues of a linear 
matrix A are complex. In this case they are complex conjugates and can 
be denoted by λ = μ + iv and λ = μ — ivy where v F* 0. The eigen
vectors of A can be chosen to be conjugate, so that they can be denoted 
by h and h. Let us set 

h = i (h i — ih2), 

where hx and h2 are real vectors. The vectors hi and h2 are linearly 
independent, since if they were linearly dependent, then the vectors 
h and h would also be linearly dependent. Thus hi and h2 may be assumed 
to form a basis for the phase plane P of equation (2). 



16] PHASE PLANE OF A LINEAR SYSTEM 119 

S1 

FIGURE 30 FIGURE 31 

An arbitrary real solution of (2) may be written in the form 

x = cheu + cheXi, (9) 

where c is a complex constant. Let 

t = C1 + ii2 = ce"; 
then we have 

x = «% + i2h2. 

Let us map the phase plane P affinely onto the auxiliary plane P * of the 
complex variable f in such a way that the vector hi goes into 1 and the 
vector h2 into i; then to the vector ^ h i + £2h2 will correspond the complex 
number f = ξ1 + ΐξ2. Under this mapping, the phase trajectory (9) will 
be mapped into a phase trajectory on the plane P * described by the 
equation 

f = ceu. (10) 

(C) Focus and center. We shall rewrite equation (10) in polar coordi
nates by setting 

f = ρ β ^ c = Reia. 

Thus we obtain 
p = Ρβμί, φ = vt + a, 

which is the equation of motion of a point in the phase plane P*. For 
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μ ^ά ο every trajectory turns out to be a logarithmic spiral. The corre
sponding picture on the plane P is called a focus. If μ < 0, then the 
point approaches the origin asymptotically as t increases, describing a 
logarithmic spiral. This is a stable focus [Fig. 32(a)]. If μ > 0, then the 
point moves from the origin toward infinity, and we have an unstable 
focus [Fig. 32(b)]. If the number μ is zero, then every phase trajectory 
except the state of equilibrium (0, 0) is closed, and we have the so-called 
center (Fig. 33). 
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FIGURE 35 

Figures 32 and 33 give a picture in an auxiliary phase plane; in the 
plane P the picture is affinely distorted (see, for example, Figs. 34 and 35). 

Above we investigated so-called nondegenerate cases where the roots 
λχ and λ2 are distinct and different from zero. A small variation of the 
elements of the matrix (a}) does not change the general character of the 
behavior of phase trajectories in these propositions. The case of a center 
is an exception: for a small variation of the elements of the matrix (a}) the 
equality μ = 0 can be violated, and the center will pass into a stable or 
unstable focus. Because of its importance this degenerate case (of the 
center) is included in the basic text of the section. The remaining de
generate cases will be investigated in Examples 1 and 3. 

EXAMPLES 

1. (Degenerate node.) If the matrix A of the system (1) has only one 
eigenvalue λ, then there are possible two essentially different cases; in 
describing these cases we shall denote by A the transformation corre
sponding to the matrix A. 

Case I. There exists in the plane P a basis hi , h2 consisting of two 
eigenvectors of the transformation A: 

Ahj = Xhj, Ah2 = Xh2. (11) 

Case II. There exists in P a basis hi , h2 such that 

Ahi = Xhi, Ah2 = Xh2 + hi . (12) 

The existence of a basis of one of the forms (11), (12) follows directly 
from Theorem 28, but here we shall prove this fact directly. Let hi be 
an eigenvector of the transformation A, and h2 an arbitrary vector which 
is not collinear with h i . Then we have 

Ahi = Xhi, Ah2 = ahi + /ih2. 
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From this it is evident that the transformation A has, in terms of the basis 
hi , h2, the matrix 

\a μ) 

so that λ and μ are its eigenvalues, and therefore μ = λ. If a = 0, then 
the relations (11) are satisfied for the basis hx, h2. If a j£ 0, then by 
replacing the vector hi by the collinear vector «hi, we obtain a basis which 
satisfies (12). 

By direct inspection we see that in case I the general solution of (2) 
may be written in the form 

x = c V + c2h2eu = x0ex (13) 

This solution has the initial value (0, Xo). For λ 9^ 0 every solution 
describes a ray emanating from the origin. For λ < 0 the motion is 
directed toward the origin [Fig. 36(a)] and for λ > 0, away from the 
origm [Fig. 36(b)]; for the case λ = 0, see Example 3. 

By direct inspection it is also seen that in case I I an arbitrary solution 
of (2) has the form 

x = c W + c2(lM + h2)eXi. 

If we expand this solution in terms of the basis hi , h2, 

x = ^ h i + £2h2, 

we obtain the equations of the trajectories in P in terms of the basis hx, h2 : 

f i = (c1 + c2t)eu, e = c2eu. (14) 

An affine mapping of the phase plane P , which transforms vectors hx and 
h2 into unit orthogonal vectors directed along the coordinate axes of the 
plane P*, also transforms the trajectories of P into trajectories of P*, 
where the trajectories are already given in rectangular coordinates by (14). 
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We shall investigate the case when λ ^ 0 (for the case λ = 0 see Ex
ample 3). First let λ < 0. In this case we shall study the trajectories 
filling the plane P*. First of all from equations (14) it is evident that, by 
changing simultaneously the signs of c l and c2, we shall obtain a reflection 
of the plane P * with respect to the origin under which trajectories are 
transformed into trajectories. Thus it is sufficient to examine those tra
jectories which fill out the upper half-plane. For c2 = 0, c1 ^ 0 we 
obtain two trajectories, one for c1 > 0 and the other for c1 < 0. The 
first one coincides with the positive semiaxis of abscissas and the second, 
with the negative semiaxis of abscissas; the motion along both is directed 
toward the origin. We shall consider the trajectory c1 = 0, c2 > 0. We 
have 

ξ1 = c ¥ , ξ2 = c V . (15) 

For t = 0 we obtain the point (0, c2) on the axis of ordinates. As t increases 
from zero, the point first moves to the right, then to the left, always 
descending toward the origin t0, which it approaches along the trajectory 
which is tangent to the positive direction of the axis of abscissas. As t 
decreases from zero to — oo, the point moves to the left and at the same time 
it ascends less rapidly so that the general tendency of its motion is in the 
negative direction along the axis of abscissas. If in equations (15) the 
constant c2 is assigned all positive values, then the trajectories described 
in this manner fill out the entire upper half-plane [Fig. 37, (a)]. We have 
here a stable degenerate node. If λ > 0, then the trajectory is obtained 
from those described by a mirror reflection of the plane in the axis of 
ordinates [Fig. 37(b)], and the motion along them proceeds in the opposite 
direction, i.e., away from the origin of coordinates. This is an unstable 
degenerate node. The phase trajectories in plane P are shown in Fig. 38(a) 
and 38(b). 
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/ / / 

(a) (b) 

FIGURE 38 

2. Let us study the linear homogeneous second-order equation with 
constant coefficients , , v 

x + ax + bx = 0. (16) 
Replacing this equation with a normal system by the method presented 
in §4, we obtain . . 

s = V, V = —bx — ay. (17) 
The phase plane of system (17) may be taken as the phase plane of equa
tion (16). By direct inspection it is seen that the characteristic polynomial 
of (17) coincides with the characteristic polynomial of (16), that is, 

p2 + ap + b. (18) 

Thus, if the roots of (18) are complex, then the phase plane of (16) is 
a focus or center. We shall study the phase plane in the case of real, 
distinct, and nonzero roots of (18). Let λ be a root of (18) and h = (A1, A2) 
its corresponding eigenvector. We have then, taking into account the form 
of system (17), ft2 = ^ 

so that the characteristic direction corresponding to the eigenvalue λ is 
determined by a straight line having the equation 

y = λ ζ ; 

we shall call it the characteristic line. 
If the roots λι and λ2 are negative, then we have a stable node [see (A)]. 

In this case both characteristic lines pass through the second and fourth 
quadrants; the trajectories in the neighborhood of the origin are tangent to 
whichever of these lines is closer to the axis of abscissas [Fig. 39]. 

If λι and λ2 are positive, then we have an unstable node [see (A)]. Both 
characteristic lines pass through the first and third quadrants; in the 
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FIGURE 40 FIGURE 41 

neighborhood of the origin the trajectories are tangent to the line closer to 
the axis of abscissas (Fig. 40). 

If λι and λ2 have different signs, then we have a saddle; one characteristic 
line passes through the second and fourth quadrants and the other through 
the first and third quadrants. In the direction of the first of these lines, 
the trajectories approach the origin, and in the direction of the second, 
they recede from the origin (Fig. 41). 

3. We shall study, finally, the case when at least one of the eigenvalues 
of the matrix A is zero. 

Case I. Only one eigenvalue, 

λι ^ 0, λ2 = 0, 
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FIGURE 43 

is zero. In this case the solution can be written in form (4), where ξ1 and 
£2 are defined by the formulas (5). Since λ2 = 0, then £2 = const, and 
the motion takes place along the straight line £2 = const in the direction 
of the line i·1 = 0 or away from it depending on the sign of the number \\. 
All points of the line ξ1 = 0 are states of equilibrium (Fig. 42). 

If there exists only one eigenvalue λι = λ2 = 0, then the two cases in 
Example 1 can occur. 

Case I [see (11), λ = 0]. The general solution may be written in the 
form [see (13)] 

x = x0. 

This case occurs if all coefficients of (1) are zero; every point of the plane P 
is a state of equilibrium. 

Case II [see (12), λ = 0]. The general solution may be written in the 
form [see (14)] 

ti = c1 + c% e = c\ 
The motion takes place uniformly along each of the straight lines £2 = 
const. All points of the line £2 = 0 are states of equilibrium (Fig. 43). 



CHAPTER 3 

LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS 

In this chapter we develop the theory of linear equations first for a 
normal nth-order system and then for one nth-order equation; almost all 
results are related to the equation derived from the corresponding results 
for the normal system, The third section of this chapter is devoted to 
normal linear homogeneous systems with periodic coefficients. The basic 
result here is Lyapunov's theorem on transforming a normal system with 
periodic coefficients into a normal system with constant coefficients by 
means of a linear periodic transformation of the variables. Later this 
result will find an important application in stability theory. Its proof is 
very simple, but is based on a comparatively nonelementary part of the 
theory of matrix functions. This theory, which is not a part of the theory 
of ordinary differential equations, is presented for the convenience of the 
reader in the last chapter of this book, which is a purely algebraic supple
ment. Thus the third section (§19) of this chapter is nonelementary be
cause it contains matrix calculus. The material of this section is, ap
parently, presented for the first time in an undergraduate textbook. 

17. The normal system of linear equations. We shall study here the 
normal system of linear equations with variable coefficients 

** = Σ *&)*'" + *>*®> < = 1, . . ·, n. (1) 

We recall that if qi < t < q2 is the interval where the coefficients a)(t) 
and the free terms bl(t) of system (1) exist and are continuous; then, by 
Theorem 3, the interval qi < t < q2 is the maximum interval of existence 
of every solution of (1). In the sequel we shall assume that every solution 
to be considered is defined on this interval and that every value t considered 
belongs to it. 

The fundamental system of solutions. First of all we shall study the 
homogeneous system of equations 

** = Σ aK0*y, i = 1, · · ·, n, (2) 

or, in vector form, 
x = A(t)x. (3) 

127 
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(A) We shall establish the simplest properties of equation (3). (a) If 
x = <p{t) is a solution of (3) which vanishes for a certain value to, i.e., 

P(h) = 0, (4) 

then this solution is identically zero: 

<p(t) = 0, qi < t < q2. 

(b) If the vector functions 

*l(0> *2(0, · · · > <Pr(t) 

are solutions of (3), then the vector function 

<p(t) = c V l ( 0 + · · · + C>r(0, 

where c1, . . . , cr are constants, is also a solution of (3). 
Property (b) can be verified directly. Property (a) follows from the fact 

that the vector x = 0, which is identically zero, is obviously a solution 
of (3), and therefore the solution <p(t), specified in (a) as having common 
initial conditions (4) with this solution, must coincide with it. 

(B) Let 
<Pi(t), P2(t),...,i>r(t) (5) 

be a system of solutions of (3). I t is called linearly dependent if there exist 
constants c1, c2, . . . , cr, not all simultaneously zero, such that 

c W O + c2p2(f) + · · ■ + cVr(<) s 0. 

Otherwise, the system (5) of solutions of (3) is called linearly independent. 
It follows that if for even one value t = to the vectors 

^l(^o), <P2(to), · · · , <Pr(to) (6) 

are linearly dependent, then the solutions (5) are linearly dependent. In 
other words, if the system (5) is linearly independent, then for no value 
of t can the vectors (5) be linearly dependent. 

We shall now prove this. Let us assume that the vectors (6) are linearly 
dependent, i.e., that 

cW*o) + · · · + c>r(*o) = 0, 

where not all the numbers c1, . . . , cr are zero. Let us set 

<p{t) = cV i (0 + · · · + cVr(i). 
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By proposition (A) the vector function <p(t) is a solution of (3), and is 
also identically equal to zero, since it vanishes at the point t = t0. 

We now turn to the concept of a fundamental system of solutions, which 
is most important for homogeneous linear systems. 

(C) The system of solutions of equation (3) 

<Pl(t), ^2(0, · · · , Vn(t), (7) 

where n is the order of the system (2), is called & fundamental system of solu
tions if it is linearly independent [see (B)]. I t turns out that (a) a funda
mental system of solutions always exists for the equation (3), and (b) if 
(7) is a fundamental system of solutions of (3), then every solution φ(ί) 
of (3) can be represented in the form 

V(t) = cVl (0 + C2<p2(t) + . · . + Cn<pn(t), (8) 

where c1, . . . , cn are suitably chosen constants. (For a linear system with 
constant coefficients, the fundamental system of solutions was constructed 
in §14). 

We shall prove first of all that a fundamental system of solutions of 
(3) exists. Let 

ai, a2, . . . , an 

be an arbitrary system of constant, linearly independent vectors, where 
n is the order of (2). We shall define solutions (7) by the initial conditions 

<pi(to) = a,:, i = 1, . . . , n, 

where t0 is a certain value of t. Since the vectors ^ι(^ο)> <Ρ2(Ιο)> · · · <Pn(to) 
are by assumption linearly independent, then proposition (B) implies that 
the solutions (7) are also linearly independent, i.e., they form a funda
mental system. 
' We shall show that every solution <p(t) can be written in the form (8). 

Let t0 be a certain instant of the time t; since the solutions (7) are linearly 
independent, the vectors v>i(2o)> · · · , <Pn(to) are also linearly independent 
[see (B)], and since their number is equal to the dimension of the vector 
space considered, they form a basis for it, so that the vector <p(t0) may be 
written in the form 

*(fo) = c W o ) + · · · + cVn(<0), (9) 

where the numbers c1, . . . , cn are suitably chosen. The solutions <p(t) 
and c V i M + - · · + οηφη(ί) have common initial conditions [see (9)] 
and therefore coincide, so that (8) is valid. 
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We shall now proceed to a description in coordinate form of the facts 
obtained and to the determination of certain other results. 

(D) Let 
Vi(t),...,pn(t) (10) 

be a certain system of solutions of equation (3). Let us express the solu
tion <pk(t) in terms of coordinates by setting 

<Pk(t) = (<Pk(t), <pl(t), . . · , <pl(t)). 

We form the matrix 

0>n(O] 
<Pn(t) 

Ψη 5(0 J 

(11) 

where the solution <pk(t) of (2), or more precisely, its coordinates, serve as 
the fcth column. We denote the determinant of this matrix by W(t); it is 
called the Wronskian determinant of the system of solutions (10). It is 
evident that, if the solutions (10) are linearly independent, then the 
Wronskian W(t) cannot vanish for any value of t; in this case system (10) 
is a fundamental system of solutions. Furthermore, if (10) is linearly de
pendent, the Wronskian is identically zero. Whenever the system (10) is 
fundamental, we shall call the matrix (11) & fundamental matrix. 

We shall now prove that any given nth-order square matrix, consisting 
of functions of t and satisfying certain natural conditions, is fundamental 
for a certain system of equations of the form (2). 

(E) We shall assume that the matrix (11) is an arbitrary given matrix 
of functions of t which are continuously differentiable on the interval 
qi < t < q2, with a determinant which does not vanish on this interval. 
Then (11) is fundamental for some (unique) system (2) which is defined 
on the interval q\ < t < q2. 

To prove this, we shall write out the statement that the vector function 
<pk(t), whose coordinates form the kth column of the matrix (11), con
stitutes a solution of (3). We have 

<pl(t) Σ «fad®, i, k = 1, (12) 

If in this relation the index i is fixed and only the index k is considered to 
be variable, then the system of relations obtained can be taken as a system 
of linear algebraic equations in the unknowns a\(t), . . . , a%

n(t). This sys-
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tern can be solved uniquely, since its matrix is obtained by a transposition 
of the matrix (11) so that its determinant does not vanish. Thus for every 
fixed i the functions a){t) may be determined uniquely from (12). They 
then become continuous functions since the functions φ\{ί) and <ph(t) are 
continuous. 

Liouville's formula. To prove proposition (G) we need a formula for 
the differentiation of a determinant, which we shall derive here. 

(F) Let (φ}(ϊ)) be an nth-order square matrix whose elements are 
differentiable functions of the variable t, and let W(t) be the determinant 
of this matrix. The derivative W(t) of this determinant may be found 
from the following formula: 

W(t) = TTi«) + · · · + Wn(t), (13) 

where the term Wi(t) in the 2th place on the right-hand side of the equality 
is defined in the following way. In the matrix (<p}(t)) all elements of the ith 
row are differentiated with respect to t, the other rows remaining unchanged 
and the determinant of the matrix obtained being denoted by Wi(t). I t 
is evident that the role of the rows and columns may be interchanged. 

To prove (13), we first consider the determinant U of the nth-order 
square matrix (uf) as a function of all the elements i/y, iy j — 1, . . . , n 
of this matrix, and we assume these elements to be independent variables. 
Let us calculate the partial derivative 

dur 

s 

of the function U with respect to the variable ur
8; here r and s are fixed. 

We denote the cofactor of the element u) in the matrix (w}·) by V3
if so that 

This formula gives us the expansion of the determinant U in terms of 
elements of the rth row. The cofactor V( does not depend on the variable 
ur

8 so that by differentiating (14) with respect to ur
8, we obtain 

Z = n (is) 
s 

If we set u} = φ){ί), then we have U = W(t). Differentiating W(t) as 
a composite function, we obtain by (15) 

wn) = Σ H.*&)= Σ fcW = Σ (Σ **®vi) · 
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Since it is obvious that 

i = i 

formula (13) is proved. 
We now turn to the proof of the so-called Liouville formula. 
(G) Let W(t) be the Wronskian of a fundamental system of solutions 

of equations (2); then the formula 

W(t) = W(t0) exp Π S(r) άλ (16) 

is valid, where 

S(t) = a\(t) + a\{t) + · ■ · + <£(0. 

To prove (16), we shall introduce the differential equation which the 
Wronskian satisfies. 

We shall calculate the derivative W(t) of the Wronskian by means 
of (13). In order to simplify the calculations, we shall assume the rows 
of (11) to be vectors; that is, we assume that 

x\t) = (<p\(t), . . . , *£(0), i = l , . . . , n . 

The relation (12) may now be written in the form 

x\t) = a\{t)Xl{t) + - · - + aÜt)Xn(t), (17) 

which shows that the derivative of the ith row of the matrix (11) is a linear 
combination of rows of the same matrix. Thus, in calculating the de
terminant Wi(t), we must replace the ith row of the determinant W(t) by 
a linear combination (17) of rows of the same determinant. Since adding 
multiples of the other rows to the given row does not change the value of 
the determinant, the determinant Wi{t) may be obtained from the de
terminant W(t) by multiplying its ith row by a\{t)1 so that we have 

Wi(t) = aXt)W(t). 
Thus by (13) we obtain 

W(t) = S(t)W(t). 

The unique solution of this equation with the initial condition 

W(t)\t=tQ = W(t0) 

is formula (16). Thus Liouville's formula is proved. 
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The method of variation of parameters. We turn now to the study of non-
homogeneous systems. Let 

y = A(t)y + b(t) (18) 

be the vector form of the nonhomogeneous system (1), and let y = ψ(ί) 
be a certain solution of this equation. Together with equation (18) we 
shall study the corresponding homogeneous equation (3). From §6 it 
follows directly that an arbitrary solution of (18) may be written in the 
form 

y = φ{ί) + φ(ί), 

where <p{t) is an arbitrary solution of (3). 
Thus the solution of the nonhomogeneous equation (18) reduces to the 

solution of a homogeneous equation and to the determination of a par
ticular solution of the nonhomogeneous equation. We shall show how, by 
knowing the fundamental system of solutions of the homogeneous equa
tion (3), we can find by means of quadratures a particular solution of the 
nonhomogeneous equation. 

(H) {Method of variation of parameters.) Let 

4Pi(0, · · · , <Pn(t) 

be a fundamental system of solutions of the homogeneous equation (3). 
We shall seek a solution of (18) in the form 

y = ο\ι)φι{ι) + · · · + cn(0*n(0, 
where the coefficients are indeterminate functions of t. Substituting this 
value y into (18), we obtain 

^(Ofl iO + ■ · · + Cn(t)<pn(t) + C\t)in{t) + · · · + Cn(0*n(O 
= Α{0[θ\0φλ{() + . . . + Cn(t)<pn(t)] + b(0, 

whence, remembering that φ\(ί), . . . , φη(ί) are solutions of (3), we obtain 

t\t)*i{t) + ' · · + tn(t)<Pn(t) = b(0. (19) 

Since φι(ί)} . . . , φη(ί) are linearly independent vectors at every point t, 
it follows from (19) that the quantities cl(t), . . . ycn(t) are uniquely de
termined, and therefore the values cx(t)f . . . , cn(t) may be found by in
tegrating. Equation (19) in the quantities c1^), · · . , cn(t) may be written 
in terms of the coordinates and has the form 

Σ φ}{ί)ο\ΐ) = b\t), i=l,...,n. 
} = 1 
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Matrix form of systems of linear equations. In a number of cases it is 
preferable to write equation (3) in its matrix formy where the fundamental 
matrix of (3) is the unknown value. We shall give this form here. 

(I) If (7) is a fundamental system of solutions of (3), then 

«=1 

This relation takes the matrix form 

Φ0) = Α(1)Φ(1), (20) 

where Φ(0 is the derivative of the fundamental matrix Φ(£) = (φ)(ί)) 
with respect to time t, that is, Φ(ΐ) = (ψ}(ί)). Thus the fundamental matrix 
Φ(0 of (3) satisfies the matrix equation (20); in addition, every solution of 
the matrix equation 

X = A(t)X, (21) 

where X is an unknown matrix, is the fundamental matrix of (3) only if 
the determinant of X is not zero. Hereafter, by a solution of equation (21) 
we shall mean only a matrix X which satisfies (21) and whose determinant 
is different from zero. It is obvious that finding one solution of (21) is 
equivalent to finding all solutions of (3). We note that if X = Φ(0 and 
X = Φ(0 are two solutions of (21), then there exists a constant matrix P 
such that 

Φ(0 = Φ(0Ρ. (22) 

Let us prove this last statement. If 

*(0 = OX<)), 

m = (mi 

Pi(t) = (*>)(<), · · · , m)), 
then 

* i ( 0 , . . . , * n ( 0 (23) 

is a fundamental system of solutions of (3), and since <pj{t) is also a solution 
of (3), it can be expressed in terms of the fundamental system (23), 
so that we have 

a = l 
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If we rewrite these relations in scalar form, we obtain 

m = έ *««>?"· (2*) 
α = 1 

The relation (22) represents the matrix form of (24) for P = (pj). 
(J) We shall introduce a new unknown vector y in equation (3) by 

using the transformation 
y = S(t)x, (25) 

where S(t) = (s}(0) is a nonsingular matrix which depends on t. The 
equation for the new unknown vector function y has the form 

y = (S{t) + SiQAiW-HQy, (26) 

i.e., we obtain again an equation of type (3). To the transformation (25) 
of the vector variable corresponds the transformation 

Y = S(t)X (27) 

of the matrix variable [see (I)]. 
We shall first derive equation (26) for the unknown y. We have 

y = | (S(t)x) = S(t)x + S(t)± 

= (S(t) + S(t)A(t))x = (S(t) + S(t)A(t))S-\t)y. 

In order to show that the transformation (26) of the matrix variable corre
sponds to the transformation (25) of the vector variable, we shall rewrite 
(25) in scalar form 

y< = £ si(t)x°. 
a = l 

By means of the formula 

α = 1 

the transformation (25) sets up a correspondence between the vector 
*i(0 = ( # ( 0 , · · - , Ψ?(0) and the vector w ( f l = (*£(0, . . . , <p](t)) of 
the fundamental system (3). Thus the fundamental matrix Φ(ί) of (26), 
given by the formula 

*(0 = S(0*(0, 

corresponds to the fundamental matrix Φ(ί) of (3), so that the matrix 
indeterminate transforms according to formula (27). 
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EXAMPLE 

From proposition (C) it is clear that in order to find all solutions of equa
tion (3) it is sufficient to find its fundamental system of solutions which 
contains n linearly independent solutions. We shall show that, if we know 
one nontrivial solution of (2), then we can lower the order of (2) by one, 
i.e., we can reduce the problem to the solution of a linear system of order 
n — 1. Let 

*(<) = (*»(*), . . . , φη(ί)) 

be a solution of (3) or, what is the same thing, of (2). We seek a solution 
of (3) in the form 

x = ηφ{1) + y, (28) 

where u is an unknown function and y an unknown vector, whose first 
component we can assume to be zero: 

y = (o, y\..., s/n). 

Substitution of the vector x from formula (28) into (3) gives 

ύφ(1) + ηφ(ί) + y = Α{1){ηφ(1) + y). 

Since <p(t) is a solution of (3), we obtain 

We express this equation in terms of the coordinates, writing separately 
the first of the equations so obtained: 

ύφι{1) = έ a){t)y\ (29) 

r = £ a){t)yj - V(0, i = 2, . . . , n. (30) 
i=2 

If we determine u from (29) and substitute the value obtained into (30), 
we have 

* * = Σ $ 0 ν ί , *" = 2,. . . ,η, (31) 
i=2 

where t 

b}(t) = a}«) - J i | a)(t). 

I t must be remembered that substitution of the quantity ύ from (29) 
into (30) is possible only on the interval where the function φλ(ί) does not 
vanish. Now if ψ(ί) = {ψ2(ή, . . . , ψη(ή} is any solution of (31), then, 
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by determining u from the relation 

by means of quadratures, we obtain a solution of the original system (2) 
in the form 

x = u<p(t) + ψ(ή. 

18. The linear equation of nth order. Here we shall study the nth-
order linear equation 

2/(n) + αι(θ!Τ-1 } + ■ · ' + an{t)y = 6(0, (1) 

whose coefficients α<(ί) and free term 6(0 we assume to be defined and 
continuous on the interval q\ < t < <?2· In our study of equation (1) 
we shall reduce it to a normal system of linear equations by the method 
indicated in §4. 

The fundamental system of solutions. (A) In order to reduce equation (1) 
to a normal linear system, we introduce the new unknown functions 

xl = y, x2 = y, X» = y<*-*\ 

These new unknowns x1, . . . , xn satisfy the linear system [see §4, (A)] 

x — x , 
.2 3 

4*-1 

xn — —an(t)xl — an_i(t)x2 — · · · 

We write the system obtained in vector form 

x = A(t)x + b(0, 

where the matrix A (t) has the form 

a>i(t)xn + 6(0. 

0 

0 

0 

0 

—an(t) 

1 

0 

0 

0 

—a„_ l(0 

0 

1 

0 

0 

—a„_2(i) · · 

0 

0 

0 

1 

• —ox 

(2) 

(3) 
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and the vector b(t) is defined by the formula 

b(0 = ( 0 , 0 , . . . , b(t)). 

Equations (1) and (2) are equivalent; that is, to every solution y = ψ(ή 
of (1) corresponds the solution 

X = φ(ή = (*(0, Φ(1), . . . , * ( " - " ( 0 ) 

of (2), and conversely, to each solution 

X = <p(t) = (<p\t), φ2{ί), . . . , φη{ί)) 

of (2) corresponds the solution 

y = φ\ι) 

of (1), this correspondence being one-to-one. If the solutions ψ(ί) of (1) 
and φ(ί) of (2) correspond in such a way, then we write 

Ht) +± <p{t). 

In particular, it follows from the equivalence of equations (1) and (2) 
that the maximum interval of existence of every solution of (1) is the entire 
interval qi < t < q2 (see Theorem 3), so that henceforth we may assume 
that every solution of (1) under consideration is defined on this interval 
and every value t under discussion belongs to it. 

We shall study first the homogeneous equation 

y(n) + ai(0^/(n"1) + · · · + On(t)y = 0. (4) 

Let 
x = A(t)x (5) 

be a system of equations in vector form corresponding to (4), where the 
matrix A(t) is defined by formula (3). 

(B) Let 
* l ( 0 , * 2 ( 0 , . - . , * r ( 0 (6) 

be a certain system of solutions of equation (4). I t can be verified directly 
that the function 

m = cVi(o + · · · + cvr(o, 
where c1, . . . , cr are constants, is a solution of equation (4). The system 
(6) is called linearly dependent if there exist constants c1, . . . , cr, not all 
zero, such that 

cVl(0 + ' · · + cVr(0 = 0. (7) 
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Thus if 
* l (0 , · . . , *r(0 (8) 

are the solutions of (5) corresponding to the solutions (6): 

Ut) τ± Pi(t), i = 1, . . . , r, 

[see (A)], then the solutions (8) are linearly dependent [see §17, (B)] if 
and only if the solutions (6) are linearly dependent. 

We shall prove this. Let us assume that the solutions (6) are linearly 
dependent so that equation (7) is valid. Writing out (7) and the relations 
obtained from it by differentiation, we obtain 

cVi(0 + ■ · · + cVr(0 = 0, 

cVi(0 + · · · + Mr® = 0, ( 9 ) 

cVin-1}W + · · · + οψτ
η-ι\ο = o. 

If we remember that 

*>,·(<) = {ut),4>m,..., Ψ{Γ1\Ο), 
we see that the vector form of (9) is 

c V i ( 0 + · ' ' + c > r ( 0 = 0, (10) 

so that a linear dependence also exists between the solutions (8). Let us 
assume, conversely, that the solutions (8) are linearly dependent so that the 
relations (10) are valid. By replacing every vector <pi{t) of (10) by its first 
component, we obtain (7), so that the solutions (6) are linearly dependent. 

(C) The system of solutions 

W0, . . . ,W) (ii) 
of equation (4) is called a fundamental system if it is linearly independent. 
[The notation indicates that the number of solutions of (11) is equal to 
the order of (4).] Thus we find that fundamental systems of solutions (4) 
exist and that if (11) is fundamental, then every solution (4) can be written 
in the form 

*(*) = ctyi(0 + · · · + οηφη(ή, 

where c1, . . . , cn are constants. I t is now clear that in order to find all 
solutions of (4) we need only find its fundamental system of solutions. 
(The fundamental system of solutions for a linear homogeneous equation 
with constant coefficients was constructed in §7 and §8.) 
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We shall first show that the fundamental system of solutions of (4) 
exists. In order to do this we shall utilize the existence of a fundamental 
system of solutions of (5) [see §17, (C)]. Let 

* ι (0 , - · · , «*η(0 (12) 

be a fundamental system of solutions of (5), and let 

* i (0 , · · . ,*»(*) (13) 

be the solutions of (4) which correspond to the solutions of (12): 

Φί(ί) <=± <pi(t), i = 1, . . . , n 

[see (A)]. Since the solutions (12) are linearly independent, it follows from 
(B) that the solutions (13) are also linearly independent, so that they 
constitute a fundamental system. Let us now assume that the system (11) 
is fundamental for (4). Let the solutions (12) correspond to the solutions 
(11), and let ψ(ί) be an arbitrary solution of (4) and <p{t) the correspond
ing solution of (5). Since, by assumption, the system (11) is fundamental, 
i.e., linearly independent, the corresponding system (12) is also linearly 
independent, i.e., fundamental. Thus, it follows from (C) of §17 that 

<p(t) = cVi(0 + . - . + CWÖ. 

If we replace each vector in this system by its first component, we obtain 

so that (C) is proved. 
(D) The determinant 

| Φι(ί) · · · iMO I 

" * ? ω (i4) 

is called the Wronskian determinant of the system of solutions (11) of 
equation (4). If the solutions (12) of (5) correspond to the solutions (11) 
[see (A)], then it is obvious that the Wronskian [see §17, (D)] of the system 
of solutions (12) of (5) coincides with (14). Thus, what is true for the 
Wronskian of (12) is also true for (14). Hence, by (D) of §17, we conclude 
that the determinant (14) either does not vanish at any point or else it 
vanishes identically; in order that the system of solutions (11) be linearly 
independent, i.e., fundamental, it is necessary and sufficient that (14) not 

W{t) = VIW 

,/,<*-!> (Λ 
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vanish. From formula (16) of §17 we can obtain the Liouville formula for 
determinant (14) 

W(t) = W(t0) exp (-jt αχ(τ) drj , (15) 

since the trace, i.e., the sum of the diagonal elements of the matrix (3), is 
equal to — a\(t). Below, in Example 2, we shall give a simple direct proof 
of (15). 

(E) Let 
zin) + αλ(1)ζ{η-ι) + · · · + an{t)z = b(t) (16) 

be a nonhomogeneous equation and let 

y(n) + α!(02/ ( η-υ + · · · + an(t)y = 0 (17) 

be its corresponding homogeneous equation. From the propositions of 
§6 it follows directly that if Xo(t) is a particular solution of (16), then an 
arbitrary solution of (16) has the form 

z = φ(β) + Xo(0, 

where \f/(t) is a solution of (17). 
(F) (Method of variation of parameters.) Let 

* i ( 0 , . . . , * » ( 0 (18) 

be any fundamental system of solutions of equation (17). Then a solution 
of (16) can be obtained in the form 

Z = cHMlit) + · · · + Cn(fl*n(0, (19) 

where the functions 
cHt), . . . , ön(t) (20) 

are obtained as solutions of the system of algebraic equations: 

*i(f)i\t) + ■■■ + tn(t)än(t) = 0, 

Φιϋ)ό\ι) + ··■+ φη(ι)όη(ή = 0, 
(21) 

tf-2\t)i\t) + ·■■ + *ίΓ-2)(«)*"(0 = o, 
ψ(

1"-1)(ί)έ1(<) + · · · + *ίΓ-υ(0ί"(ί) = b(t). 
Since the determinant of the system of equations (21) with respect to the 
indeterminates (20) is the Wronskian of system (18), it follows from (D) 
that it does not vanish for any value of t; therefore, we can find the quanti-
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ties (20) from (21) and then integrate these quantities to determine the 
required functions 

c\t),..., cn(t). 

The proof of (F) follows from (H) of §17. It can also be derived directly, 
which we shall proceed to do. Assuming that the quantities (20) are 
restricted by the conditions (21), we obtain the following relations by 
differentiating formula (19): 

z = cx(i)f i(<) + · · · + cn{t)Mt), 

i = c W i W + · · · + cnMn(t), 

*<-» = c1«)^"-1'«) + · · · + c\t)^-l\t), 

/n) = c Win)(0 +-·· + c"(0*S°W 
+ ^Wr1'«) + · · · + c"«)̂ "-1'«) 
= cWin)(0 + · · · + c\t)tä\t) + 6(0. 

Substituting these expressions into (16), we obtain an identity. Thus, if 
the functions cl{t), . . . , cn(t) satisfy (21), then the function (19) is a solu
tion of (16). 

EXAMPLES 

1. If a nontrivial (not identically zero) solution ψ(ί) of equation (4) is 
known, then the order of this equation can be decreased by one, i.e., its 
solution can be reduced to the solution of a linear equation of order 
n — 1. In order to do this we make the substitution 

V = W)v, (22) 

where v is a new unknown function. We shall now show that the result 
of substituting (22) into the left-hand side of (4) leads to the equation 

b0(t)v(n) + 61(0^(η"1) + · · · + 6n-i(0*'+ bn(t)v = 0 (23) 

for,, where 60(0 = ,« ) , WO - 0. (24) 

Since our whole investigation is correct for an nth-order equation in which 
the coefficient of the nth derivative is one, it is necessary to divide (23) by 
b0(t) = yf/{t)) so that (4) reduces to (23) only on an interval where ψ(ί) does 
not vanish. If we set 

fit) t tW 
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and replace the unknown function v by a new unknown function 

w = Vj 

we arrive at an equation 

w(n-l) + i l ( i y » - 2 ) + . . · + ln_x(t)w = 0 

of order n — 1. If a solution x(t) of this equation exists, then we obtain 
the solution v of (23) by quadrature: 

v = Jx(t) dt, 

and the solution y of (4) may be obtained by substituting this function v 
into (22). 

We shall prove that the substitution (22) reduces (4) to the form (23), 
while preserving the relations (24). Differentiating (22), we obtain 

yik) = t(t)vk + · · ■, 

where terms containing derivatives of v of orders lower than k are not 
written. Therefore equation (4) takes the form (23), where b0(t) — ψ(ί). 
Since ψ(ί) is a solution of (4), v = 1 is a solution of (23). Substituting 
v = 1 into (23), we obtain bn(t) — 0. Thus the relations (24) are proved. 

2. We shall prove Liouville's formula (15) for one nth-order equation 
without using LiouvmVs formula for a system [see formula (16), §17]. 
Here we shall use the differentiation rule for a determinant given in §17 
[see §17, (F)]. Applying this differentiation rule to (14), we obtain 

W(t) = TTi(0 + · · ■ + Wi(t) + · · · + Wn(t), 

where Wi(i) is the Wronskian W(t) in which the ith row is differentiated. If 
i < n, then, as a result of differentiating of the ith row, we obtain a row 
coinciding with the (i + l) th row of the determinant W(t), and therefore 
we have 

Wx(t) = W2(t) = · · · = TTn-i(0 = 0. 

By differentiation of the nth row we obtain the row 

which by (4) is a linear combination of rows of W(t), the nth row being 
taken with the coefficient — a,i(t). Since the determinant Wn(t) contains 
rows with the indices 1, . . . , n — 1 of the Wronskian, these rows can be 
rejected in the linear combination, leaving only the nth row with the 
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coefficient — a\(t). Thus for the Wronskian we obtain the differential 
equation 

W(t) = -ai(t)W(t), 

the solution of which gives us Liouville's formula (15). 

19. The normal linear homogeneous system with periodic coefficients. 
Among linear equations with variable coefficients a particularly important 
role is played by equations with periodic coefficients. The present section 
is devoted to an account of some of the properties of normal linear ho
mogeneous systems of differential equations with periodic coefficients. 
Lyapunov's theorem is the most essential of these properties. The proof 
of Lyapunov's theorem is given here, but it is less elementary than any of 
the previous developments in this book. It is based on the matrix calculus, 
the necessary details of which are presented in the last chapter of the 
book. 

Let 
X = A (t)X (1) 

be a normal linear homogeneous system of equations written in matrix 
form [see §17, (I)]. We shall assume that the coefficients of this system are 
periodic functions of time t with period r, i.e., the matrix A(t) satisfies the 
condition 

A(t + r) = A(t). 

(A) For any (matrix) solution 

x = m (2) 
of equation (1) [see §17, (I)], a constant (nonsingular) matrix C can be 
found such that 

Φ(* + r) = Φ(*)0. 

We shall call the matrix C the fundamental matrix for the solution (2). If 
X = Φ({) is any other solution of (1), and C is its fundamental matrix, 
then we have 

C = P~lCP, (3) 

where P is a certain nonsingular constant matrix. 
To prove the existence of the matrix C we observe that, together with 

the solution (2), the matrix Φ(£ + τ) is also a solution of equation (1). 
In fact, 

Φ(* + T) = A(t + τ)Φ(ί + T) = A(t)S>(t + r ) . 
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Thus by formula (22) of §17, we have 

Φ(* + r) = Φ(0<7, 

where C is a constant matrix. 
To prove formula (3) we shall also utilize formula (22) of §17. Because 

<$(£) is a solution of equation (1), it follows from the formula above that 

φ(*) = Φ(ήΡ. 
Hence 

φ(* + r) = Φ(ί + τ)Ρ = Φ(0ΟΡ = ΗήΡ^ΟΡ, 

which also gives (3). 
(B) Equation (1) and the equation 

Ϋ = B(t)Y (4) 

with a periodic matrix 2?(£) of the same period r as the matrix A(t) are 
called equivalent if there exists a linear transformation 

Y = S(*)X 

[see §17, (J)] with a periodic matrix S(t) of period r which transforms (1) 
into (4). Hence formulas (1) and (4) are equivalent if and only if there 
exist solutions X = Φ(ί) and Y = Φ(ί) of these equations with the same 
fundamental matrix. 

Let us prove this assertion. Let us first assume that (1) and (4) are 
equivalent. Let X = Φ(ί) be an arbitrary solution of (1) with a funda
mental C; then Y = Φ(ί) = θ(ί)Φ(0 is a solution of (4), and we have 

¥(* + T) = SQL + τ)Φ(* + τ) = 5(*)Φ(* + r) = 5(0Φ(Ο<? = *(*)C. 

Thus the fundamental matrix C of solution Φ(ί) is also fundamental for 
the solution ^(^). 

We shall now assume that the solutions X = Φ(ί) and Y = ty(t) of (1) 
and (4) exist with the same fundamental matrix C; then we have 

Φ(* + r) = Φ(0ί7, Φ(ί + r) = ¥(t)C. 

Dividing the second of these relations by the first, we obtain 

*(* + τ)Φ-1(* + r) = Ψ(0Φ_1(0· 

Thus the matrix 
S(t) = ΦίθΦ-Η«) 
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is periodic with period r, and we have 

*(0 = 5(0Φ(0· (5) 
Since each of the solutions Φ(ί) and V(t) is uniquely determined [see §17(E)], 
it follows from (5) that equation (4) is obtained from (1) by means of a 
transformation with matrix S(t). 

As is evident from (A) and (B), to every equation of the form (1) which 
is considered unique up to an equivalence [see (B)], there corresponds a 
matrix C determined uniquely up to a transformation [see (3)]. In addition, 
the set of all invariants of the matrix C with respect to transformations of 
the form (3) constitutes a complete system of invariants of equation (1), 
which is uniquely determined up to an equivalence. 

I t should be noted that everything said in (A) and (B) is true both for 
the case of real matrices and for the case of complex matrices. In the fol
lowing important theorem of Lyapunov (Theorem 12), we shall distinguish 
between real and complex cases. 

THEOREM 12. Any equation (1) is equivalent [see(B)] to the equation 

Ϋ = BY, 

where B is a constant matrix. (The matrix 5 , generally speaking, is 
complex.) If in equation (1) the matrix A(t) is real with period τ then 
this equation, considered as periodic with period 2r, is equivalent to the 
equation 

Ϋ = ΒλΥ, 

where the matrix B\ is constant and real, and the matrix S(t) taking (1) 
into Ϋ = ΒχΥ is also real. 

We shall preface the proof of Theorem 12 by the following proposition: 
(C) Let 

Ϋ = BY (6) 

be a system of linear homogeneous equations with constant coefficients 
written in matrix form. Here the matrix B is constant. It turns out that 
the matrix 

Y = etB (7) 

[see (D), §33] is a solution of (6). 
To prove that (7) is a solution of (6), we shall write out the function 

etB explicitly in the form 

etB = E + tB + ^B2 + ^Bs + ··-. 
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Hence for the derivative (d/dt)etB we obtain 

*.tetB = B(E + tB + ^B* + ..} = BetB. 

Proof of Theorem 12. Let C be the fundamental matrix of some solution 
X — φ(ή of equation (1). By (D) of §33 there exists a matrix B which 
satisfies the condition 

erB = C. 

We shall prove that equations (1) and 

Ϋ = BY (8) 

are equivalent. In fact, proposition (B) implies that the matrix Y = etB 

is a solution of (8). Thus, if (8) is considered an equation with periodic 
coefficients with period r, then the fundamental matrix of the solution 
Y = e

tB is C, that is [see formula (20) of §33] 

e(t+r)B = etBerB = etBC 

Since the fundamental matrices of the solutions of equation (1) and of 
equation (8) coincide, these equations are equivalent [see (B)], and the 
first part of Theorem 12 is proved. 

We shall now assume that A(t) is a real matrix, Φ(ί) is a certain real 
solution of equation (1), and C is the fundamental matrix of this solution, 
so that 

Φ(* + r) = Φ(0<7. (9) 

Since Φ(ί) is a real, the matrix C is also real. From (9) it follows that 

Φ(* + 2r) = Φ(* + r)C = Φ(ί)02. (10) 

By (D) of §33 there exists a real matrix Βχ which satisfies the condition 
e2rBx = C2 

We shall prove that equation (1) and the equation 

Ϋ = ΒλΥ, (11) 

considered as equations with period 2r, are equivalent. Actually, the 
matrix etBi is a solution of (11), so that if (11) is considered as an equation 
with periodic coefficients of period 2r, then the fundamental matrix of the 
solution Y = etBl is C2. Since the fundamental matrices of the solutions 
of (1) and (11) coincide [see (10)], these equations must be equivalent. 
Theorem 12 is thus proved. 
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(D) Let C be an arbitrary nth-order square matrix, of which the absolute 
value of all the eigenvalues is smaller than a certain positive number p. 
The elements of the matrix Cm, where m is an integer, will be denoted by 
mc)y so that Cm = (mcj). Then there exists a positive number r, which 
does not depend on i, j , m, such that 

ra < rpm. (12) 
Hence, in particular, it follows that for an arbitrary vector x the inequality 

|Cwx| < n2rpm\x\ (13) 

is valid. In order to obtain the bound (12) we consider the series 

/ « = Ι + * + *Ϊ + · · · + *= + · · · . 

whose radius of convergence is clearly p. From Theorem 27 (see §33) it fol
lows that the matrix series 

ri p2 pm 

ΚΟ) = Ε + ± + ^ + . ..+£_ + . · . 

is convergent and, in particular, the numerical series 
1 * 2 t mi 

«i + f + ■$ + - + ■£ + -
is also convergent. Since this series converges, its terms do not exceed a 
certain number r which may be chosen uniformly for all pairs of numbers 
(i, j), so that the bound (12) holds. 

(E) Let 
x = A (t)x (14) 

be the vector form of the matrix equation (1), and let C be the fundamental 
matrix of some solution Φ(ί) of (1). An eigenvalue λ of multiplicity k 
of the matrix C is called a characteristic number of multiplicity k of (1) 
and (14). Since, up to a linear transformation, the matrix C does not de
pend on a random selection of the solution Φ(ί) of (1) [see (A)], the char
acteristic numbers of (14) and their multiplicities are determined here in 
an invariant way. If λ is a characteristic number of multiplicity k of (14), 
then the number (1/r) In λ is called the characteristic exponent of multi
plicity k of (14). Let us assume that all real parts of the characteristic 
exponents of (14) are smaller than some number 7; then there exists a 



19] NORMAL SYSTEM WITH PERIODIC COEFFICIENTS 149 

positive number R such that for any solution <p(t) of (14) the bound 

\<p{t)\ < A|*(0)|e* (15) 

holds for t > 0. 
We shall prove (15). Let Φ(ί) be a solution of (1) with initial condition 

Φ(0) = E; then any solution <p(t) of (14) may be written in the form 

φ(β) = Φ(ί)φ(0). (16) 

This may be verified by substituting (16) into (14). Furthermore we have 

Φ(* + r) = Φ(ί)0, 
Φ(ί + 2τ) = #(0C2, 

Φ(< + m T ) = Φ(Ζ)<7™, (17) 

Since the elements of the matrix Φ(ίι) are bounded on the interval 
0 < t\ < r, there exists a positive number σ such that 

|Φ(<ι)χ| < σ|χ| for 0 < tx < r . (18) 

Since, further, all the eigenvalues of the matrix C are smaller than eTy in 
absolute value, it follows from (13) that the bound 

|Cwx| < n2reTmy\x\ (19) 

holds for an arbitrary vector x. Now let t be any positive number; we can 
find a nonnegative integer m such that t = mr + 2 ι , 0 < ί ι < τ . By 
virtue of (16) and (17) we have 

φ{1) = 3>(mT + tl)p(0) = Φ(*χ)Ο(0) . 

Hence in accordance with (18) and (19) we obtain 

\φ(ή\ < < r n W " > ( 0 ) | . 

Since for 0 < ti < τ the number etl7 is not less than a certain constant 
c > 0, the last inequality can be written in the form 

|*«)l < —- eTV(0)|. 

This yields the bound (15). 



CHAPTER 4 

EXISTENCE THEOREMS 

Here we shall first prove the existence and uniqueness Theorems 1, 
2, and 3 which were formulated earlier. Further study is given to the 
question of the dependence of a solution on the initial values and on the 
parameters, if the latter actually appear in the equations. We shall in
vestigate the dependence of a solution with fixed initial values on the 
parameters; then, by a quite simple technique, we shall convert the initial 
values into parameters. Thus the problem will be reduced to one of 
describing the dependence of a solution on the parameters. For both the 
case of initial values and the case of parameters, we shall prove that the 
dependence of the solution on these variables is continuous and that the 
solution is differentiable with respect to these variables. In both cases it is 
necessary to distinguish between local theorems and what we shall call 
integral theorems. In the first case, one can assert that certain properties 
of a solution hold on the time interval \t — t0\ < r, where r is a positive 
number which is generally speaking "small." In the second case, it is 
assumed that for fixed values of the parameter or for fixed initial values 
there exists a solution defined on the time interval ri < t < r2 which 
can be "large." It is then asserted that for initial values, or for values of 
the parameter which are very nearly fixed, a solution exists on the entire 
interval rx < t < r2 which is continuous for all values of these variables 
or differentiable with respect to all the variables. 

In addition to this body of material, we include in the present chapter 
a section on the first integrals of a system of ordinary differential equations 
and a study of a linear partial differential equation which is closely related 
to the concept of a first integral. The results of this section will not be 
used further in this book. 

20. Proof of the existence and uniqueness theorem for one equation. 
In this section we shall give a proof of Theorem 1, the theorem of existence 
and uniqueness formulated in §1, for the first-order equation 

x = f(t, x), (1) 

whose right-hand side is defined and continuous, together with the partial 
derivative df/dx, in a certain domain Γ of the to-plane P. A more complex 
and general form of the proof of Theorem 1 is found in the proof of Theorem 
2 in the following section. In presenting the proof first for the case of one 
equation, it is our aim to bring out the basic ideas of this type of proof, 

150 
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which in the more general application is encumbered by details of a 
secondary character. We shall prove Theorems 1 and 2 by the method of 
successive approximations developed by Picard and applied in analysis 
for the proofs of many existence theorems. This method can also be used 
for the approximate calculation of a solution and is therefore of great 
practical value. In certain cases the method of successive approximations 
can be interpreted as a method of contraction mappings. The proof will 
be carried out with such an interpretation in order to show the relation 
between these two methods. The difference between these two methods 
will be brought out in the proof of Theorem 3. 

Basic ideas of the proof. The first step in proving Theorem 1 by the 
method of successive approximations is the transition from the differential 
equation to an integral equation, which we shall formulate as a separate 
proposition. 

(A) Let x = <p(t) be a certain solution of equation (1) defined on the 
interval r\ < t < r2, so that the identity 

<p(t) = f(t, φ{1)\ (2) 

is satisfied, and let 
<p(to) = xo (3) 

be a certain initial condition which this solution satisfies. We then find 
that for the function <p(t) the integral identity 

<p(t) = x0+ / ( r , φ(τ)) dr (4) 

is satisfied on the entire interval ri < t < r2. Conversely, if a continuous 
function φ(ί) satisfies the identity (4) on the interval r\ < t < r2, then 
the differentiate function x = φ(ί) is a solution of the equation (1) 
and satisfies the initial condition (3). In other words, the integral equa
tion (4) is equivalent to the differential equation (2), together with the 
initial condition (3). 

We shall prove this. Let us assume first that the relation (4) is satisfied. 
If we replace the variable t by its value t0, we obtain φψο) = XQ, SO that 
(3) follows from (4). Moreover, the right-hand side of (4) is obviously 
differentiable with respect to t, whence the left-hand side is also differ-
entiable with respect to t. By differentiating (4) we obtain the identity (2). 

Let us now assume that the relations (2) and (3) are satisfied. By in
tegrating (2) from t0 to t we obtain 

<p(t) - <p(t0) = / / ( τ , φ(τ)) dr. 
Jto 
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We then obtain equation (4) from the last equality by virtue of (3). 
Thus proposition (A) is proved. 

We shall now introduce a certain notation which we shall use below 
in the proof of Theorem 1. 

(B) Let x = φ(ί) be a continuous function defined on some interval 
T\ < t < r2 such that its graph is contained completely in Γ, and let t0 
be a certain point of the interval ri < t < r2. Then, if we use the right-
hand side of (4), we can set up a correspondence between the function 
<p(t) and the function <p*(0, which is also defined on rx < t < r2, by 
means of the equality 

**(0 = Xo+ / ( τ , φ(τ)) dr. (5) 

(The graph of the function <p*(t), of course, need not pass through Γ.) 
Thus the right-hand side of (4) can be regarded as an operator establishing 
the correspondence between the functions φ* and φ. Denoting this operator 
by the single letter A} we write (5) in the form 

φ* = Αφ. (6) 

By using the operator A, the integral equation (4) can be written in the 
form 

φ = Αφ. (7) 

(C) Let φ(ί) be a certain continuous function defined on the interval 
T\ < t < r2. The maximum modulus of this function, 

\\φ\\ = max |^(0|, 
τλ<1<τ2 

will be called its norm \\φ\\. If ^(0 and X(t) are two continuous functions 
defined on the interval r\ < t < r2, then the norm ||^ — x|| of their 
difference \l/(t) — x(t) is a nonnegative number which expresses the extent 
to which these functions differ: if the number \\φ — x\\ is small, then the 
functions ψ and X are "close" to each other. The equality \\ψ — x|| = 0 
is valid if and only if ψ and X coincide identically. The notion of uniform 
convergence, which is familiar from a course in analysis, may be formulated 
easily in terms of the norm. Let 

<Po(t), *>i(0, · · · > w(0> · · · (8) 

be a sequence of continuous functions defined on the interval r\ < t < r2. 
The sequence (8) converges uniformly to a function φ, defined on the same 
interval r\ < t < r2, if 

lim \\φ — <pi\\ = 0. 
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In order that the sequence (8) converge uniformly, it is sufficient that the 
inequalities 

\\<Pi+i — <p%\\ < di 

be valid, where the numbers a0, a\, . . . , a*, . . . form a convergent series. 
Before proving Theorem 1 in detail, we shall outline briefly the method 

of successive approximations, which is applicable to the solution of equa
tion (7). We form the sequence 

<P0y <Pl, · · · > <Pif · · · ( 9 ) 

of continuous functions which are defined on a certain interval Γχ < t < r2 
containing the point t0. Every function of the sequence (9) is determined 
by the preceding one by means of the formula 

φί+ι = Αφ{, i = 0, 1, 2, . . . . (10) 

If the graph of the function φι passes through Γ, then φ{+\ is defined by 
(10), but in order to define the next function ^ + 2 it is necessary that the 
graph of <pi+\ pass through Γ. This, as we shall show, can be achieved by 
selecting a sufficiently short interval ri < t < r2. Furthermore, by de
creasing the length of the interval r\ < t < r2, we may also show that 
the elements of the sequence (9) satisfy the inequalities 

hi+i - <Pi\\ < MWi - « - i l l , i = 1, 2, . . . , (11) 

where 0 < k < 1. From (11) follow the inequalities 

\\<Pi+i — <Pi\\ < \\<pi — Poll · k \ t = 1, 2 , . . . , 

so that the sequence (9) is uniformly convergent [see (C)]. Furthermore, 
it is also easily established that the limit φ of (9) satisfies equation (7). 

The same construction can be described in a somewhat different way 
by the method of contraction mappings. We shall select a certain family 
Ω of functions defined on the interval r\ < t < r2 (where τχ < t0 < r2) 
so that the graphs of these functions pass through the domain Γ. We 
shall assume, in addition, that with respect to the operator A the family Ω 
satisfies the following two conditions: (a) whenever A is applied to any 
function of Ω, we again obtain a function of Ω; (b) there exists a number /c, 
0 < k < 1, such that for two arbitrary functions ψ and X of Ω the in
equality 

\\Αφ - Ax|| < A # - x|| 

is satisfied. In this sense the "mapping" A is a contraction mapping 
(it would be more correct to say "contracting"). 
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FIGURE 44 

It is easy to see that, if the conditions formulated are satisfied for the 
family Ω, then, by starting from an arbitrary function <p0 of Ω, we obtain 
by the induction formula (10) an infinite sequence (9) satisfying (11) and, 
as was noted above, converging uniformly to a solution φ of (7). 

We shall now turn to the proof of Theorem 1 on the basis of these 
remarks. 

Proof of Theorem 1. The initial values t0 and x0 of the solution of equa
tion (1) to be found are coordinates of the point (t0, xo) in Γ. First of all, 
we choose any rectangle Π with its center at (to, x0), its sides parallel to 
the axes, and with its boundary entirely contained in Γ (Fig. 44). We 
shall denote the length of a horizontal side of Π (parallel to the t axis) 
by 2q and the length of a vertical side by 2a. Thus the point (t, x) be
longs to Π if and only if the equalities 

\t ~ *o| < ff, XQ\ < a (12) 

are satisfied. Since Π is a closed set which is contained in Γ, the continu
ous functions f(t, x) and df(t, x)/dx are bounded on Γ and therefore 
two positive numbers M and K exist such that for any t and x satisfying 
(12), the inequalities 

W,x)\ <M, df(t, x) 
dx 

< K (13) 

are valid. 
Along with the rectangle Π we shall consider a "narrower" rectangle n r , 

defined by the inequalities 

\t - t0\ < r, \T. — Xo\ < a, 

where r < q (14) 
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(see Fig. 44). We shall determine the number r more precisely. Wedenote 
by ΩΓ the family of all continuous functions defined on the interval 
\t — t0\ < r whose graphs pass through nr. Thus the function φ, which 
is defined on \t — t0\ < r, belongs to ΩΓ if and only if the inequality 

k(0 - Xo\ < a (15) 

is satisfied for any t belonging to this interval. 
We shall now endeavor to select the number r in such a way that the 

following two conditions will be satisfied: 
(a) If the function φ belongs to ΩΓ, then the function φ* = Αφ [see 

(5) and (6)] also belongs to ΩΓ. 
(b) There exists a number ifc, 0 < fc < 1, such that the inequality 

\\Αψ - Ax\\ < φ - x\\ (16) 

is valid for any two functions ψ and X of ΩΓ. 
Let us consider the condition (a). In order that φ* = Αφ belong to ΩΓ, 

it is necessary and sufficient that the inequality 

|<p*(£) — XQ\ < a 

be satisfied for \t — t^\ < r. By virtue of (5) and (13) we have 

k*(0 - *ol = / /(r , φ(τ)) dr < Mr, 

from which it is evident that condition (a) is satisfied for 

^Έ- W 

/ fix, φ(τ)) dr, 

Let us now consider condition (b). We have 

Φ*(ί) = x0 + 

x*(<) = Xo+ j f(r,x(T))dT. 

Subtracting the second equality from the first, we obtain 

\ψ*(0 - x*(f)l = / [f(r, ψ(τ)) - /(τ, X(T))] dr 

< \ | / ( τ , * ( τ ) ) - / ( τ , χ ( τ ) ) | ί τ (18) 
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Let us now estimate the size of the last integrand by means of Lagrange's 
formula and the second of the inequalities (13): 

Ι/(τ, *(τ)) - f(r, X(T)) | = ^ (*(r) - X(r)) <K-\m-x(r)\; 
(19) 

here Θ is a number between ψ(τ) and Χ(τ) and, consequently, it satisfies 
the inequality \θ — x0\ < a. From (18) and (19) we have 

\\Αφ - Ax\\ = \\φ* - x*\\ < Κφ - x||. 

Thus (b) is satisfied if the number k = Kr is less than one, i.e., if 

r < j f - (20) 

Thus, if r satisfies (14), (17), and (20), then the conditions (a) and (b) are 
satisfied for the family ΩΓ. In what follows we shall assume that r has 
been chosen in such a way that (14,) (17), and (20) are satisfied. 

We shall now construct a sequence 

<P0y ΨΙ, · . · > <Pi, . . · (21) 

of functions defined on the interval \t — t0\ < r by setting 

<Po(t) = xo, (22) 

<pi+1 = Αφ{, i= 0 ,1 ,2 , . . . . (23) 

Since the function (22) belongs to the family ΩΓ, all functions of (21) also 
belong to the same family [see condition (a)]. In addition, we have 

Iki — Poll = . m a x \<Pi — χο\ < a 
\t-t0\<r 

[see (15)]. By virtue of (16) we obtain 

Hw+i — <pi\\ = \\A<pi — Ap»_i| | < k \\<pi — pi_i | | , 

whence 
| |^·+ι — ^ | | < ak\ i = 0, 1, 2, 

Thus by (C) the sequence (21) converges uniformly on the interval 
\t — t0\ < r to a, continuous function φ. Since all functions of (21) 
belong to ΩΓ, the function ψ also belongs to ΩΓ [see (15)]. We now show that 
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the function φ satisfies (7). To do this, we note that the sequence 

Αφ0, Αφι, . . . , Αψί, . . . . 

converges uniformly to the function Αφ\ actually, we have 

\Αφ — Αφ{\ < k\\<p — <pi\\. 

Taking the limit as i —> oo in relation (23) we obtain 

φ = Αφ. 

Thus, we have proved that a solution x = ψ(() of equation (1) exists which 
satisfies the initial condition (3); moreover, we have established that the solution 
x = φ(ί) is defined on the interval \t — t0\ < r, where r is an arbitrary 
number which satisfies (14), (17), and (20). 

We now proceed to the proof of uniqueness. Let x = ψ(ί) and x = x(t) 
be two solutions of equation (1) with common initial values t0, x0, and 
let r i < t < r2 be the interval which is the intersection of the intervals 
of existence of the solutions ψ and X; it is clear that rx < t0 < r2- Let us 
denote by N the set of all such points of the interval rx < t < r2 at which 
the solutions ψ and X coincide. The set N is nonempty since it contains 
the point t0. We shall show that the set N is open and that it is closed 
on the interval rx < t < r2. 

We shall prove first that the set N is open. Let t\ be an arbitrary point 
of N; since the solutions ψ(ί) and x(i) coincide at this point, that is, since 
Ψ(1ι) = *(ti) = %i, the point (h, x\) can be regarded as the common 
initial value for both solutions. In this sense (<i, x{) is no different from 
(t0, Xo)} and therefore we shall preserve for (ti, x{) the notation (t0, x0); 
this will allow us to keep the previous notation. Going over from the 
differential equation (1) to the integral equation (4), we obtain for both 
yp(t) and X(t) integral equalities which in terms of operators can be written 
in the form 

ψ = Αψ, x = Ax. (24) 

As before, we now choose first a rectangle Π in Γ with its center at the 
point (to, Xo), and then a rectangle n r in such a way that the number r 
will satisfy still another condition in addition to the inequalities (14), 
(17), and (20): namely that the functions ψ and X are defined for 
\t — to\ < r and satisfy the inequalities 

\Ψ(ί) - Xo\ < a, \x(t) - x0\ < a; 

this is possible since ψ(ή and x(t) are continuous. Then on the interval 
\t — t0\ < r the functions \J/(t) and x(t) belong to the family ΩΓ, and 
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consequently, by (16) and (24), we obtain 

||* - x|| = ||A* - Ax|| < φ - x||, 

which is possible only when ||* — x|| = 0, i.e., when ψ and X coincide on 
the interval \t — tQ\ < r. Consequently, we have established that for 
every point t0 of iV, the set N also contains some interval \t — t0\ < r 
with its center at t0, so that the set N is open. 

We shall now prove that the set N is closed on the interval rx < t < r2. 
This means that we must show that if the sequence £x, t2, · · · , U, . . . of 
points of N converges to some point t of the interval rx < t < r2, then t 
also belongs to N. We have 

*(U) = *fc), * = 1, 2, . . . . 

Since φ(ί) and x(t) are defined and continuous at t, we may pass to the 
limit as i —> oo to obtain ψ(ϊ) = X(?), so that the point t also belongs to 
the set N. 

In proposition (D) below it will be shown that since the nonempty set N 
is both closed and open on a certain interval, it must coincide with this 
interval. Thus we shall have established that the solutions ψ(ί) and x(t) 
coincide on the entire interval r\ < t < r2. Theorem 1 will thus be 
proved. 

(D) Let ri < t < r2 be any interval of real numbers and N a non
empty subset which is both open and closed on the interval rx < t < r2) 
then the set N coincides with the interval rx < t < r2. 

Since the set N is nonempty, it contains at least one point t0. Let us 
assume that there exists on the interval rx < t < r2 a point ti which 
does not belong to N. To be definite, we assume that t\ > t0. We denote 
by iVi the set of all points t of the set N which satisfy the inequality t < tiy 
and let t be the least upper bound of the set iVi. Since Ni is obviously 
closed on the interval rx < t < r2, the point t belongs to iVi and there
fore cannot coincide with t\, so that t < t\. But since N is open, it must 
contain an entire interval with the point t and therefore t cannot be the 
least upper bound of the set Νχ. This contradiction proves proposition (D). 

EXAMPLE 

Let us find a solution by the method of successive approximations for 
the simple equation 

x = x. 

We shall seek the solution with initial values 

*o = 0, x0 = 1. 
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The corresponding integral equation can be written in the form 

= 1 + / φ{τ) dr. Jo φ(0 

If we form the sequence 
Ψ0, <Pl, · · · j <Pi, 

we have 

*o(0 Ξ 1, 

φι(1) = 1+1 dr=l + t, = 1 + dr = Jo 

= l + J o (1 + T)dr= l + i + ^*2, 

= 1+/o(1 + r + ^ ! r 2 ) d r = = 1 + i + ^ 2 + l ! i 3 

The limit of this sequence (which is uniformly convergent on any interval 
on the number axis) is the function <p(t) = eK 

21. Proof of the existence and uniqueness theorem for a normal system 
of equations. Here we shall prove the theorem of existence and uniqueness, 
Theorem 2 which was formulated in §3 for a normal system of equations 

** = f(t, x\ x2,...} xn), i = 1, . . . , n; (1) 

the right-hand sides f(t, x1, x2, . . . , xn) of (1), together with the partial 
derivatives df(t, x1, . . . , xn)/dx\ i, j = 1 , . . . , n, are defined and contin
uous in a domain Γ of the space of the variables t, x1, . . . , xn. If we set 

x = (x\...,xn), (2) 

f(«,x)= {ί\ΐ,χ),ί\ΐ,χ),...,Γ{1,χ)), 

we may rewrite (1) in the vector form [compare §14, (A)] 

i = f(t, x). (3) 

We shall carry out the proof in vector form by the method of successive ap
proximations; this will be an almost verbatim repetition of the proof of 
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Theorem 1 given in the preceding section. In addition to the proof of 
Theorem 2, we shall also present here the proof of Theorem 3 by a some
what modified form of the method of successive approximations. 

Auxiliary propositions. In order that we may use vector notation freely, 
we shall establish first of all certain natural definitions and simple in
equalities for vectors and vector functions. 

The length or modulus |x| of the vector (2), as we know, is defined by the 
formula 

|x| = + Vix1)2 + · · · + (χη)2. 

It is an easily proved fact that if x and y are two vectors, then the inequality 

|χ + y| < M + |y| 
is valid. From this inequality follows a similar inequality for an arbitrary 
number of vectors Χχ, . . . , xj, namely, 

|xi + · · · + xi| < |xi| + · · · + |xi|. (4) 

Let <p(t) = (φ1(ί)ί . . . , <pn(t)) be a continuous vector function of a real 
variable t, i.e., a vector whose coordinates are continuous functions of t. 
If the function <p(t) is defined on the interval ri < t < r2, then for 
Π < to < r2 on the same interval we can define the vector function 

Ψ® = / φ(τ) dr, 

whose components ψι(ί), . . . , ψη(ή are defined by the formulas 

here the inequality 

**(<) = / Ψ\Τ) dr; 

I /"' I I /" 
/ φ{τ) dr\ <\ \φ(τ)\ dr (5) 

is valid. To prove this inequality we shall divide the interval of integra
tion into m equal parts by setting 

Δ = ; tk = t0 + kA, k = 1, . . . , m, 
Tib 

where the number Δ will be positive for t > t0 and negative for t < Jo-
Then, by the definition of the integral of a vector function and by virtue 
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of (4), we have 

φ(τ) dr\ = lim Σ 1»(**)Δ - l im Σ !«>(**)I * ΙΔΙ 

161 

I/' k=\ fc=l 

-\f \φ(τ)\ dr 

We shall establish an inequality for the vector function 

g ( x ) = {g\x\ . . . , xn), . . . , gn{x\ . . ., xn)) 

of the vector variable x defined on a convex set Δ of the space of variables 
x1, . . . ,xn. We shall assume that the inequalities 

ag*(gi, . . . ,s») 
dxi 

< K 

are valid, where K is a positive number. Then for any two points x and y 
of the set Δ the inequalities 

| g « - g(7)l < n2K\x - y| (6) 
are valid. 

To prove inequality (6) we introduce the notion of the segment joining 
x and y, namely, we set 

z(s) = y + s(x - y). 

Whenever s runs over all values of 0 < s < 1, then z(s) takes all values 
of the segment joining the points x and y, and always remains in this seg
ment because of the convexity of the set Δ. We obtain (by applying the 
Lagrange formula) 

<V(z(S))| ί*(χ) - s'"(y) = <fa(D) - Am) = ds 8=θ 

By calculating dgl(z(s))/ds by the formula for the derivative of a com
posite function, we obtain 

fr'(z(«)) = «ft V w , . . . , Λ«)) = γ agVoo,■..,*"(*)) dz\s) 
ds ds i^-' dxk ds 

k=l 

_ A a g V ( « ) , . . . , « " ( « ) ) ,jb _ f K . 
~~ z-r **k w y )f 

k=l dxk 

and therefore 

lff*(x) - 9{(y)\ < Σ κ\χ" -ν"\<Σ K\* - yl ^ nK\* - yl· 
fc=l k=l 
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By squaring the last inequality, summing over i) and extracting the root, 
we obtain 

|g(x) - g(y)l < n*2K\x - y| < n2K\x - y|. 

We proceed from the differential equation (1) to an integral equation in 
the same way as in the proof of Theorem 1. 

(A) Let x = <p(t) be a certain solution of the differential equation (3), 
so that the identity 

φ{1) = f (*,*(*)) (7) 

is valid, and let 
<p(h) = x0 (8) 

be the initial condition which this solution satisfies. 
We shall now prove that the pair of relations (7) and (8) is equivalent 

to one relation, 

<p(t) = x0 -r / f(r, <p(rj) dr. (9) 

Assuming that the integral identity (9) is satisfied and substituting t = t0 
into it, we obtain (8), which, when differentiated with respect to t, yields 
(7). We shall now assume that (7) and (8) are satisfied. Integrating (7) 
from t0 to t and taking into account (8), we obtain (9). 

(B) By using the right-hand side of (9), we can make every vector 
function <p(t) whose graph passes through domain Γ correspond with the 
function <p*(t) by setting 

/ ί (τ ,*(τ)) , φ*(ί) = X o + / f (T ,* ( r ) )d r . (10) 

We may write the same relation briefly in the operator form 

φ* = Αφ. (11) 

Equation (9) may now be written 

φ = Αφ. (12) 

(C) Let <p(t) be a continuous vector function defined on the interval 
T\ < t < r2. We define the norm \\<p\\ of this function by setting 

IMI = max |^(01. 
ri<t<r2 

By using the concept of the norm, we may formulate the condition of 
uniform convergence of the sequence 

<P0j <Ply · · · , <Pi, · · · (13) 
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FIGURE 45 

of vector functions defined on the interval rx < t < r2. The sequence 
(13) of vector functions converges uniformly to a vector function φ de
fined on the same interval r\ < t < r2, if 

lim \\φ — ρ,·|| = 0. 

In order that the sequence (13) be uniformly convergent, it is sufficient 
that the inequalities 

| |pi+i — <Pi\\ < ai 

be satisfied, where the numbers a0, ai , . . . , a,{, . . . form a convergent series. 
We now proceed to the proof of Theorem 2. 
Proof of Theorem 2. Since the point (t0, Xo) = (*o, x\, #o, · · · , ^ο) be

longs to Γ, there exist positive numbers q and a such that all points (t, x), 
which satisfy the conditions 

\t — t0\ < q, |x — x0| < a, (14) 

are in Γ. Since the set Π consisting of all points (t, x) satisfying (14) is 
closed and bounded (Fig. 45), the continuous functions 

|f(Z, x)| and df(t, x) 
dxi hi 1, . . . , n, 

are bounded on Π, i.e., there exist positive numbers M and K such that 

df%x)\ If ft x) I < M, 

on the set Π. 
dxi < K, i,j = 1, . . . , n , (15) 
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Along with Π we consider its subset n r which is defined by the in
equalities 

\t — t0\ < r, |x — x0| < a, 

where 
r < q (16) 

(Fig. 45). We shall denote by ΩΓ the family of all continuous vector func
tions defined on the interval \t — t0\ < r whose graphs pass through n r . 
Thus the function φ, defined on the interval \t — t0\ < r, belongs to the 
family ΩΓ if and only if the inequality 

\<p(t) - Xo| < a (17) 

is satisfied for any t on this interval. 
We now choose r in such a way that the following two conditions will 

be satisfied: 
(a) If the function φ belongs to the family ΩΓ, then the function φ* = Αφ 

[see (10) and (11)] also belongs to ΩΓ. 
(b) There exists a number k on the interval 0 < k < 1 such that for 

any two function ψ and X of the family Ω,. the inequality 

\\Αψ - AX\\ < kU - X|| (18) 

is valid. 
Let us consider condition (a). In order that the function φ* = Αφ 

belong to ΩΓ, it is necessary and sufficient that for \t — t0\ < r the in
equality 

\**(t) - xol < a 

be satisfied. By virtue of (10), (5), and (15), we have 

I rt I I rt I 

|„*(<) - x0| = / ί(τ,φ(τ))άτ\ < / \ί(τ, φ(τ))\άτ\ < Mr. 
I J t0 I I J t0 I 

From this it is evident that condition (a) is satisfied for 

r < £ - (19) 

Let us now consider condition (b). We have 

i rl 

\**(t) - x*(t)\ = / (f(r , * ( T ) ) - f(r, χ ( τ ) ) ) dr 

< / \Κτ,φ(τ))-ί(τ,χ(τ))\άτ · (20) 
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We shall now find an estimate for the last integrand by using inequalities 
(6) and (15): 

|f(r, *<?)) - f(r, X(r))| < η2Κ\φ(τ) - x(r) | . (21) 

From (20) and (21) it follows that 

\\Αψ - Ax\\ = \\ψ* - x*|| < η2Κτ\\ψ - x||. 

Thus condition (b) is satisfied if 

where k < 1. 
Thus if the number r satisfies the inequalities (16), (19), and (22) 

(which we shall henceforth assume to be satisfied), then the conditions 
(a) and (b) are satisfied for the family ßr . 

We now form the sequence of vector functions 

*o(0 Ξ * ο , 9i(t),...,pi(t),..., (23) 

defined on the interval \t — t0\ < r by setting 

<Pi+\ = A<pi, i = 0, 1, (24) 

Since the function <po belongs to the family ßr, all functions of (23) belong 
to the same family [see condition (a)]. Further, we have [see (17)] 

ll*i — Poll = , max \φχ(ί) - x0| < a. 
\t-t0\Sr 

From (18) we obtain 

lki+i — <pi\\ = \\A<pi — -4^<_ι|| < k\\i>i — *»_i||, 

whence 
l k + i - <Pi\\ < ak\ (25) 

Thus by virtue of (C), the sequence (23) converges uniformly to a con
tinuous function φ belonging to ΩΓ. We shall show that the function φ 
satisfies equation (12). For this we observe that the sequence 

Αφ0, Αφχ, . . . , A<pi, . . . 

converges uniformly to the function Αφ; actually, we have [see (18)] 

\\Αφ — Αφ{\\ < k\\<p — φ{\\. 
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If we allow i —> oo in relation (24), we obtain 

φ = Αφ. 

Hence we have proved the existence of a solution x = <p(t) of equation (3) 
satisfying the initial condition (8); moreover, the solution x = <p(t) is defined 
on the interval \t — t0\ < r, where r is an arbitrary number satisfying (16), 
(19), and (22). 

We now proceed to the proof of uniqueness. Let x = \[/(t) and x = x(t) 
be two solutions of equation (3) with the common initial values t0) x0, 
and let r\ < t < r2 be the intersection of the intervals of existence of 
the solutions ψ and X; it is obvious that r\ < t0 < r2. We shall denote 
by N the set of all points of the interval 7Ί < t < r2 at which the solu
tions ψ and X coincide. The set N is nonempty since it contains the 
point t0. We shall show that N is open and that it is closed on the interval 
ri < t < r2. From this it will follow, by proposition (D) of §20, that N 
coincides with the interval rx < t < r2, that is, the solutions ψ and X 
coincide identically on this entire interval. 

First we shall prove that the set N is open. Let ti be an arbitrary point 
of N; since the solutions ψ(ί) and X(t) coincide at this point, so that ψ(1ι) = 
X(ti) = Xi, then (t\, Xi) can be taken as common initial values for both 
solutions. In this sense, the point (t\, Xi) does not differ from the point 
(t0, Xo)> and therefore we shall use for (ti, Xi) the designation (t0, x0), 
since this will permit us to retain the previous notation. Going over from 
the differential equation (3) to the integral equation (9), we obtain for 
both \f/(t) and X(t) integral equalities, which, in operator form, can be written 

ψ = Αψ, Χ= Ax. (26) 

We choose again the set Π which is contained in the domain Γ with its 
center at the point (t0, Xo) [see (14)]; we then choose the set ΠΓ in such a 
way that the number r, in addition to satisfying inequalities (16), (19), 
and (22), also satisfies the condition that the functions ψ and X are defined 
for\t — t0\<r and satisfy the inequalities 

\Ψ(ή — xo| < a, 

|X(0 - xol < a. 

This is possible, since ψ(() and X(t) are continuous. Then ψ(ί) and X(t), 
\t — t0\ < r, are contained in the family ΩΓ so that by (18) and (26) we 
obtain 

||* - x|| = | |A* - Axil < *||* - x||, 
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which is possible only if ||^ — x|| = 0, that is, if ψ and X coincide on the 
interval \t — t0\ < r. Hence, whenever t0 is contained in N, the set N 
will also contain some interval \t — t0\ < r with its center at t0l so that 
N is open. 

We shall now prove that the set N is closed on the interval r\ < t < r2. 
To do this we must show that if the sequence t\, t2, . . . , U, . . . of points 
of N converges to a point t of the interval rx < t < r2, then t must also 
belong to N. We have 

*(«.·) = X(U), i = 1, 2, . . . . 

Since the functions \//(t) and X(t) are defined and continuous at ?, then by 
passing to the limit as i —► oo, we obtain \f/(t) = X(t), so that I also 
belongs to N. Thus Theorem 2 is proved. 

We shall now state as a separate proposition certain facts established in 
the proof of Theorem 2 which will be needed later. 

(D) Let us assume that the right-hand sides of the system (1) [or, in 
vector form, of equation (3)] are defined and continuous, together with 
their partial derivatives dfl/dxj, in Γ. Let (t0, x0) be a point of Γ, and let 
q and a be positive numbers such that the set Π consisting of all points 
satisfying (14) is contained in Γ. Furthermore, let M and K be positive 
numbers such that the inequalities (15) are satisfied for all points (t, x) 
satisfying (14). Finally, let r be any positive number which satisfies (16), 
(19), and (22). Then the solution of equation (3) with the initial values 
(Jo, Xo) is defined on the interval \t — t0\ < r. In addition, the solu
tion may be obtained on the interval \t — t0\ < r as the limit of the 
sequence (23) which is defined inductively by (24), since inequality (25) 
is satisfied for these functions. 

Proof of Theorem 3. We shall proceed to the proof of Theorem 3, which 
asserts that for the normal linear system 

xl = £ αΧθζ' + h\0 = f% x\ . . . , xn), i = 1, . . . , n, (27) 

whose coefficients Oy(i) and free terms b%(t) are defined and continuous on 
the interval q\ < t < q2, there exists a solution with the arbitrary initial 
values 

t0, XQ,..., XO, qi < to < q2, (28) 

defined on the entire interval qx < t < q2. We shall show that the same 
operator A [see (10) and (11)], which was applied in the proof of Theorem 2 
but is constructed here by using the right-hand sides of system (27), 
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gives rise to a sequence of vector functions 

<p0(t) = x0, * i (0 , . . . , *i(t), . . . , (29) 

which not only converges on the entire interval q\ < t < q2, but also 
converges uniformly on any segment contained in that interval. To 
carry out the method of successive approximations we shall need to find 
a more precise estimate for the numbers ||ρ»+ι — <Pi\\, where i = 0, 1, 
2, . . . . In this case it can be seen that the method of successive approxima
tions does not fit into the frame of the method of contraction mappings. 

Let A be the operator defined by relations (10) and (11), stemming from 
the system (27) with the initial values (28). Obviously, we shall apply 
the operator A to an arbitrary continuous function <p(t) defined on the 
interval qi < t < q2. By proposition (A) the system (27) with the initial 
conditions (28) is equivalent to the operator equation 

φ = Αφ, (30) 

for which we shall find a solution defined on the entire interval 
q\ < t < q2. The functions of the sequence (29), which is defined 
inductively by the relation 

<pi+l = Αφ{, i = 0, 1, 2, . . . , (31) 

are defined on the interval q\ < t < q2. 
Let ri < t < r2 be an arbitrary interval which contains the point t0 

and which is still contained in the interval q\ < t < q2 so that 

qi < ri < t0 < r2 < q2. 

We shall show that the sequence (29) converges uniformly on the interval 
ri < t < r2 to the solution of (30). For the right-hand sides of equations 
(27) we have , t = ̂  
and therefore for rx < t < r2 the inequalities 

ÖX3 
< K, i,j = 1, . . . , n , 

are valid, where K is some positive number. Since the function <pi(t) is 
bounded on the interval ri < t < r2l the inequality 

|*i(0 ~ <Po(t)\ < C 

holds over this interval, where C is some constant. Furthermore, on this 



21] PROOF FOR A NORMAL SYSTEM OF EQUATIONS 

interval we obtain from (5) and (6) the following relations: 

\p2(t) - PM = / [Kr, Px{r)) - ί(τ, *0(r))] dr 

< / \ί(τ,φι(τ))-ί(τ>φο(τ))\άτ\ 

I f* 
\p»(f) - p2(t)\ = / [ f (τ , ρ2(τ)) ~ ί(τ, φι(τ))] dr 

I f* 
< \ \ί(τ,φ2{τ))-ί{τ,φι{τ))\άτ 

\J to 

169 

< n2KC\t - iol; 

< & ^ \ t - t 0 \ > . , 

\Pi+i(t) - PM = / [f(τ, «N(T)) - f(r, Λ _ ! ( τ ) ) ] 

< / If (r, Pi(r)) - f (T, ^ _ I ( T ) ) | dr 
1· /«o 

2! 

(n2X)*C 
i\ \t - t0\\ 

Hence we have 

\\Pi+i - Pi\\ < C 
(n2K(r2 - n))* 

Since the numbers C(n2K(r2 — r\))l/i\ form a convergent series, the 
sequence (29) converges uniformly on the interval ri < t < r2 to a cer
tain continuous function <p(t). For this function we have 

i /■' 
\\A<pi - Αφ\\ < max / |f(r, *«(τ)) - f(τ, «>(τ))| άτ 

r1<t<r2 "«/ <o 

so that the sequence of functions 

Αφ0, Αφχ, . . . , Αφι, 

< n2K(r2 - Γ ι ) | | Λ - «,||, 

converges uniformly to the function Αφ on the interval ri < 2 < r2. 
Passing to the limit in (31) we obtain 

φ = Αφ. 

Since ri < t < r2 is an arbitrary interval containing the point t0 and 
contained in the interval qi < t < q2j the sequence (29) converges at 
every point of the interval q\ < t < q2, so that the function <p(t) is defined 
on the entire interval q\ < t < q2 and is a solution of equation (30) on 
the same interval. Thus Theorem 3 is proved. 
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22. Local theorems of continuity and differentiability of solutions. We 
shall consider here a normal system of differential equations whose right-
hand sides depend on certain parameters, and we shall prove that under 
certain assumptions, a solution of this system with fixed initial values is a 
continuous and differentiable function of these parameters, while in the 
case of variable initial values it is a continuous and differentiable function 
of the initial values. The normal system under consideration will be 
written in the form 

4* = f(t, x1,..., xn, M1, . . . , μ1), i = 1, . . . , n, (1) 

where μ1, . . . , μι are certain numerical parameters. In what follows we 
shall assume that the right-hand sides 

Γ(ί,χ\...,χη,μι,...,μι), < = Ι , . , . , η , (2) 

of these equations, as well as their partial derivatives 

An ri Tn i i) _ 3 f ft **> ■ · · , 3η> μ1, . ■ . , μ1) 
jj\L, x , . . . , χ , μ , . . . , μ ) — . . 9 

i,j = 1, . . . , n , (3) 

are defined and continuous in some domain Γ of the space of the variables 
t, xl, . . . , χη, μ1, . . . , μ*. The system (1) may be rewritten in the vector 
form 

x = f(*,x,/*); (4) 
here 

X=(x\...,Xn), μ=(μ\...,μ1)) f = ( / \ . . . , / " ) 

are vectors belonging to vector spaces of dimensions n, Z, n, respectively. 
Continuous dependence of solutions on parameters. We shall prove 

Theorem 13 below on the continuous dependence of a solution on param
eters by a straightforward repetition of the proof of Theorem 2, in which 
we shall use only those steps of that proof which are mentioned in proposi
tion (D) of §21. 

THEOREM 13. If (t0) Xo, Mo) is an arbitrary point of the domain Γ, 
there exist positive numbers r and p such that for 

IM — MOI < p 
the solution 

X = <p(t, μ) 

of equation (4), which satisfies the initial condition 

<p(t0, μ) = x 0 , (5) 
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is defined on the interval \t — t0\ < r and is a continuous function of 
all the variables t, μ1, . . . , μι on which it depends. 

Proof. First we shall select positive numbers q, α, p such that the set 
Π of all points (2, x, μ) which satisfy the inequalities 

\t - t0\ < q, |x - X0| < a, \μ - Mol < P (6) 

belongs to the domain Γ. Since the functions (2) and (3) are continuous 
in Γ and the set ΙΪ is closed, there exist positive numbers M and K such 
that for every point (t, x, μ) of Π the inequalities 

|f(i,X,M)| <M, \ή(ΐ,Χ,μ)\<Κ 

are valid. We now choose a positive number r which satisfies the in
equalities 

r < g , r < ^ , r < ^ (fc < 1) 

[see (16), (19), and (22) of §21 and (D) of §21]. 
For every fixed value μ which satisfies the last inequality of (6), we 

replace the differential equation (4), together with initial condition (5), 
by the integral equation 

t, μ) = Xo + / f(r, φ(τ, μ), μ) dT ip{t, μ) = X0 + / f(r, φ(τ, I»), μ) dT (7) 

[see §21, (A)]. Using the right-hand side of this integral equation, we shall 
define an operator setting up a correspondence between the function 
<p(t, μ) and the function 

φ*(ί, μ) = Xo + / f (r, φ(τ, μ), μ) άτ, 
J tQ 

or, briefly, 
φ* = Αμ<ρ. 

We shall also define a family S2r of vector functions <p(t, μ) of the variables 
t, μ defined on the set \t — t0\ < r, \μ — μ0\ < p, assuming that <p(t, μ) 
belongs to ΩΓ if the inequality 

\φ(ϊ, μ) — Xo| < a 

is satisfied for \t — t0\ < r, \μ — μ0\ < p. In proposition (D) of §21 it 
was noted that the sequence of functions 

<Po(t, μ) = Xo, <Pl(t, #*), . . . , <Pi(t> # * ) , . . . , (8) 
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defined by the inductive relation 

<pi+i = Αμφι 

for every fixed μ, where \μ — μ0\ < p, is defined on the interval 
\t — t0\ < r and converges uniformly to the solution φ{ί, μ) of equation 
(7), where the inequalities 

\\<Pi+i — 4>;|| < ak{ 

are satisfied. These inequalities are satisfied for any values of t, μ1, . . . , μι 

which satisfy the inequalities \t — t0\ < r, \μ — μ0| < Ρ· From these 
inequalities it follows that the sequence (8) of continuous functions de
pending on t, μ1, . . . , μι converges uniformly in these variables, so that 
its limit <p(t, μ) is a continuous function of the variables t, μ1, . . . , μι. 
Thus Theorem 13 is proved. 

Differentiability of the solutions with respect to the parameters. We shall 
now proceed to examine the differentiability of the solution <p(t, μ) of 
equation (4) with respect to the parameters μ1, . . . , μι. As a preliminary, 
we shall prove an auxiliary proposition (A), usually called HadamaroVs 
lemma. 

(A) Let g(tl, . . . ,tp, u1, . . . , uq) be a function of p + q variables 
defined in the domain Δ of the space of these variables, which is convex 
with respect to the variables u1, . . . , uq. If we set 

t = (t\ . . . , t*), u = (u\ . . . , i*«), 

we may write it as a function g(t, u) of two vectors. We shall assume that 
in the entire domain of definition #(t, u) and its partial derivatives 
dg(t, u)/du\ j = 1, . . . , q, are continuous. Then for any pair of points 
(t, Ui), (t, u2) in Δ with the same coordinate t, the relation 

Q 

fif(t, U2) - 0(t, Ui) = Σ Äy(t, Ui, U2)(tt2 - u{) (9) 
i = i 

is valid, where the functions Ay(t, Ui, u2), j = 1, . . . , q, are defined and 
continuous for all values of the arguments t, Ui, u2 (and, in particular, for 
Ui = u 2 ) . 

To prove (A) we set 

w(e) = ui + s(u2 - Ui), 0 < 8 < 1, (10) 

so that we have 

g(t, U2) - 9(t, uO = g(t, w(l)) - jf(t, w(0)) = / §- git, w(e)) ds. 
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Let us now find the derivative (d/ds)g(t, w(s)); we have 

d u t \\ d n v N <u \\ v ^ ^ ( t , w(s)) dwj(s) 
θ β ' S/V1·; " W / de* v * ' w VVJ · 

Since it is clear that (10) implies 

then, by setting 

dwj(s) 
ds ~~ 

A;(t, Ui 

^ 2 — 

, u2) = 

. . , ΙΛ/ 

Wj, 

i = i 

i = i , . . . i 

dg(t,w(s)) & 

5, 

we obtain formula (9). Since by hypothesis the functions dg(t, \x)/duJ 

are continuous, the functions Ay(t, Ui, u2) are also continuous. Thus 
proposition (A) is proved. 

THEOREM 14. Let the partial derivatives 

el(t, χ,μ) = — f(t, x, μ), i = 1, . . . , n, fc = 1, . . . , I, (11) 

of the right-hand sides of system (1) exist and be continuous in the 
domain Γ. Let (£o, Xo> /*o) be some point of Γ. Then there exist positive 
numbers r' and p ' such that for \t — t0\ < r', \μ — μ0\ < ρ' the solu
tion <p{t, μ) of equation (4), which satisfies the initial condition 

<p(t0, μ) = Xo, (12) 

has continuous partial derivatives 

* & * CM> 

and mixed partial derivatives 

d 2<p(t, μ) , . 
-dtW~ ' ( 1 4 ) 

which are also continuous and do not depend on the order of differentia
tion. Furthermore, as functions of time ty the partial derivatives (13) 
satisfy the system of equations 

d_ 
dt (Τ^) = Σ &*> *«> M), *) djJ^ + *&> *(*> *>■ Λ (15) 
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with the initial condition 

% ^ - »· <κ» 
The system (15) is called the system of variational equations for the 
system (1). 

Proof. To simplify the unwieldy notation, we shall assume in the proof 
that k = I, and we shall decompose the vector μ = (μ1, . . . , μι) into the 
vector λ = (μ1, . . . , μι~ι) and the scalar v = μι, so that we have 

μ = (λ, v). 

By Theorem (13) the solution <p(t, μ) = <p(t, λ, ν) is defined and con
tinuous for 

\t — t0| < r, \μ — μ0| < Pi 

in the sequel we shall choose only those values of the parameters λ, ν 
which satisfy the second of these conditions. 

To form the preliminary difference quotient for calculating the deriva
tive d<pl(t, λ, v)/dv, we set 

Φ% \ vu v2) = zr^—r (*% λ, ν2) - φ% λ, ν1)); v2 — V\ 

this quotient is defined for V\ ^ v2- Since 

φ% λ, v), i = 1, . . . , n, 

is a solution of the system (1), we have 

| fit, x, vu v2) = ̂ - ( | φ% x, *) - 1 *% x, * ) ) 
= „ 1 „ (/*(«, <pit, \ v2), x, v2) - fit, φ(ι, x, νθ, λ, η)). (17) 

^2 — V\ 

We apply Hadamard's lemma [see (A)] to the right-hand side of (17), 
setting 

t = (t, X), ui = (p(t, X, vi), vi), u2 = (p(t, X, v2), v»), 

g(t, u) = f(t, φ(1, X, ν), X, ν). 
By virtue of (A) we obtain 

fit, <p{t, X, v2), X, v2) - fit, <pit, X, vi), X, vi) 
n 

= Σ Α^> Ul> U 2 ) ( ^ f t λ> V*) ~ <P*(f> λ> ^ΐ)) + An+l(t, Ui, U2)(^2 ~ Vl), 
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where A}(t, Ui, u2), j = 1, . . . , n + 1, are continuous functions in all 
arguments, i.e., in the arguments t, λ, V\} v2\ 

Äy(t, Ui, U2) = Χ;(ί, λ, VU V2). 

Thus (17) can be rewritten in the form 

- ψ% λ, ι/χ, z>2) = Σ %*> λ> *Ί> ^2)^(2, λ, Ϊ>Ι, ι/2) + Xj+ifo λ, ζ/χ, ?2). 

(18) 

The last relation represents a system of linear differential equations with 
respect to the functions ψ%(ί, λ, V\, v2), i = 1, . · · , n, where the coeffi
cients of this system and the free terms depend (continuously) not only on 
t, but also on λ, V\, v2. 

We shall determine the nature of the initial conditions satisfied by the 
functions ψ*(ί, λ, νχ, v2). By virtue of (12) we have 

t\t0, λ, vi, v2) = — (<p\t0, λ, v2) - <p\t0, λ, νί)) 
V2 — V\ 

= r—^—r ( 4 - *o) = 0. 
V2 — V\ 

Thus the initial conditions for the functions ψ%(ί, λ, V\y v2) are of the form 

Ψ%, \ vu "2) = 0. 

Our purpose is to prove that the functions ψι(ί, λ, vu v2) tend to a defi
nite limit as v2 —> V\. In order to establish this fact we consider the system 
of equations 

Λ n ~ · ~ · 
- φ*(β, λ, VU V2) = Σ %}(t, λ, Vi, V2)ti(t, λ, Vlf V2) + hn+1(t, λ, VU V2) 

(19) 
in the functions 

*i(t,\,vuv2), i= 1, ...,n, (20) 

which satisfy the initial conditions 

Ψ*(*ο, λ, vx, v2) = 0. 

By Theorem 13, the functions (20) are defined and continuous for values 
of t, λ, Vi, v2 which are sufficiently close to the constants t0, λ0 = 
/, 1 l—1\ l l 
(Mo, · · · , Mo ) , Mo, Mo· 
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The functions \//l(t, λ, V\} v2) and φ%(ί, λ, vu v2) satisfy the same system 
of equations (18), (19) and have the same initial values; this fact, when 
taken together with Theorem 2, shows that they coincide: 

t\t, λ, vu v2) = t*(t, λ, vu v2). 

Here the functions on the right-hand side are also defined at νχ = v2 
and those on the left-hand side are defined only for Vi τ^ ν2. Passing to 
the limit as v2 —> vx we see that 

1 φ% λ, v) = ψί(1, λ, v, v), 

so that the derivative (d/dv)<pl(t, λ, ν) exists, is a continuous function of 
all its arguments, and satisfies the system of equations 

d_ (δφ%\,ν)\ = Σ m , λ, v, v) &φ3{1£> V) + « + 1 ( ί , λ, ν, ν). (21) 
dt\ dV ) i = l 

From this it is seen that, not only the derivatives 

Vft λ, v) 
dv 

themselves exist and are continuous, but that their derivatives with 
respect to t, i.e., 

also exist and are continuous. 
Now that it has been established that the derivatives (14) exist and are 

continuous, the proof of the first part of the theorem is complete. The 
second part, however, is more difficult to prove. The system of equations 
(21), satisfied by the derivatives (13), contains the functions h)(t, λ, ν, v) 
which are determined in a comparatively complicated manner in terms of 
the functions /* with the aid of Hadamard's lemma. 

To derive the variational equations (15) we shall first write out the fact 
that the functions φχ(ί, λ, v) satisfy system (1): 

| φ% \, V) = f\t, φ % \,V),..., φ\ΐ, λ, ν), λ, v). (23) 

From what has already been proved, the functions (pl(t, λ, ν) are differen
t i a t e with respect to v, so that the right-hand sides of (23) can be differen
tiated with respect to v\ for this reason the left-hand sides of these rela-
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tions can also be differentiated with respect to i>. Thus we obtain [see 
(3) and (11)] 

- Σ //(«. ■!><■'. *. ">. x > ' ) I ; »'<'.χ.»> + «id, «>ft > , ' ) , *. ")■ (24) 

From this relation it is evident that the partial derivatives 

exist and are continuous. On the other hand, since the partial derivatives 
(22) are also continuous, it follows from a known theorem of analysis 
that the mixed derivatives (22) and (25) coincide. Changing the order of 
differentiation with respect to t and v in equations (24), we obtain the 
variational equations (15) for fc = I. 

By differentiating the initial conditions (12) with respect to μΛ, we 
obtain the initial conditions (16) for the functions (13). Thus Theorem 
14 is completely proved. Let us now deduce a simple corollary from 
Theorem 14. 

(B) If all partial derivatives of the right-hand sides of system (1) with 
respect to the variables x1, . . . , χη, μ1, . . . , μι up to the mth order inclu
sive exist and are continuous, then the functions <pl(t, μ), i — 1, . . . , n, 
forming the solution of (1) and satisfying the initial conditions (12), also 
have continuous partial derivatives with respect to the parameters 
μ1, . . . , μι up to the mth order inclusive. 

We shall prove proposition (B) by induction on the number m by means 
of the variational equations (15). The case m = 1 has already been 
established in Theorem 14. Let us now assume that it is valid for a given 
number m; we shall prove its validity for derivatives of order m + 1. 
We shall assume that all the partial derivatives of the functions / l(i , x, /*) 
with respect to the variables xl, . . . , χ11, μ1, . . . , μι up to order m + 1 
inclusive are continuous. By the induction hypothesis, the functions 
<pl(t, μ) have continuous partial derivatives with respect to the variables 
/z1, . . . , μι up to order m inclusive. Thus the functions βφ%(ί1 μ)/θμ*} 
which satisfy the system (15), also have continuous partial derivatives up 
to the mth order inclusive by the induction hypothesis, since the right-
hand sides of (15) have partial derivatives up to order m inclusive, both 
with respect to the functions d<p?(t} μ)/θμ*, in which they are linear, and 
with respect to the parameters μ1, . . . , μι. Thus proposition (B) is proved. 
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Continuous dependence and differentiability of the solutions with respect 
to the initial values. We shall now investigate the dependence of the solu
tion of equation (4) on the initial values t0, x0; in order to emphasize the 
variability of t0, x0, we shall now denote them by r and £, respectively. 
The solution of (4) with the initial values τ, ξ now depends not only on t 
and μ but also on r and ξ, so that it must be written in the form 

x = φ&μ;τ,& (26) 

or, in terms of the coordinates, 

x{ = φι(ί,μ;τ,ξ), i = 1, . . . , n . 

To solve the problem of the range of the variables t, μ, τ, ξ where the func
tion (26) is known to be defined (whether it is continuous and under 
what conditions it is differentiable), we make a change of variables which 
leads us to the consideration of a solution with constant initial values and 
which transforms these initial values into parameters. Thus by a change 
of variables, the entire complex of problems concerning the dependence 
of a solution on the initial conditions is reduced to a corresponding complex 
of problems on the dependence of the solution on the parameters. This 
change of variables is given in the following proposition. 

(C) Let r, £, μ be an arbitrary point of the domain Γ. In place of the 
independent variable t, which is contained in equation (4), we shall intro
duce a new independent variable s by the formula 

t = r + s. (27) 

In place of the unknown vector function x in (4) we shall introduce a new 
unknown function y by the formula 

x = ί + y. (28) 

In terms of the new variables, equation (4) can be written 

g = f(r + s , £ + y , M ) . (29) 

Since the function f(t, x, μ) of the variables ty x, μ is defined in F, the func
tion 

g(«, Υ, M; r, © = f (T + s; ξ + y, μ) (30) 

of the variables s, y, μ} τ, ξ is defined under the condition that the point 
(τ + θ, ξ + y, μ) belongs to Γ. This condition, as is easy to see, dis
tinguishes a certain domain Γ* in the space of variables s, y, μ, τ, £, and in 
this domain the vector function (30) is continuous, and its components 
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have continuous partial derivatives with respect to the variables 2/x, . . . , yn, 
t1,..., F. Let 

y = φ(8,μ;τ,ξ) (31) 

be a solution of equation (29) which satisfies the initial conditions 

* ( O , # * ; T , 0 = 0. 

If we go back to the old variables by formulas (27) and (28), we obtain the 
solution 

x = φ(ί, μ; r, 0 = { + ψ(ί - r, μ; r, {) (32) 
of (4) which obviously satisfies the initial condition 

φ(τ, μ) r, {) = £. 

From the construction given in proposition (C) by applying Theorems 
13 and 14 to equation (29), it is easy to deduce that the solution (32) is 
continuous with respect to all the variables t, μ, r, £ and differentiable with 
respect to (-1,. . . , F · In the case that the functions fl(t, x, μ), 
i = 1, . . . , n, have continuous derivatives with respect to t, μ1, . . . , μι, 
the solution (32) is also differentiable with respect to τ, μ1, . . . , μι. Further 
conclusions may be drawn by applying proposition (B) to equation (29). 
Here, however, we shall formulate and prove separately only the most 
essential of the results noted. 

THEOREM 15. Let 

xl = f% x\ . . . , xn), i = 1, . . . , n, (33) 

be a normal system of differential equations whose right-hand sides are 
defined and continuous, together with their partial derivatives 

in a certain domain Γ of the space of the variables t, xl, . . . , xn. Further
more, let 

i = f(t, x) (34) 
be the vector form of this system. If (t0, x0) is an arbitrary point of Γ, 
then there exist positive numbers r' and σ' such that the solution 

x = Pit; T, & (35) 

of equation (34) which satisfies the initial condition 

P(r; r, {) = ξ 
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is defined and continuous in the variables t, τ, ξ for 

\t - T | < r'. \T - t0\ < σ', |f - x0| < σ' (36) 

and has continuous partial derivatives with respect to £l, . . . , £n,while 
the mixed partial derivatives 

az a^" 

are continuous and independent of the order of differentiation. In addi
tion, the partial derivatives 

ώ® = ä F ^ ; i o , € ) l i = X o 

satisfy the system of equations 

«(0 = Σ ti(t> *& *o, *o))*£(0 (37) 
3=1 

under the initial conditions 

<Pk(to) = δ£, (38) 

where 8l
k is Kronecker's symbol. The system (37) is called the system 

of variational equations with respect to the initial values. 

Proof. We shall utilize the transformation of variables described in 
proposition (C) in connection with equation (34), i.e., we shall assume that 
the parameter μ is absent in equation (4). By Theorems 13 and 14 there 
exist positive numbers rf and p ' such that the solution y = \f/(s, r, ξ) is 
denned [see (31)] for 

M < r', |T - t0\2 + |{ - xol2 < (P')2 (39) 

and in the same domain has continuous derivatives with respect to the 
variables £*, . . . , £n, since the right-hand side of equation (29) is differ
en t ia te with respect to these variables. In addition, the mixed derivative 
d2yf//dsd¥ is continuous and does not depend on the order of differentia
tion. For a given number p ' it is possible to select a number σ' so small 
that the inequality (39) follows from inequalities (36) for the same values 
of r and £. It follows from (32) that when the conditions (36) are satis
fied, the solution (35) is defined, continuous, and differentiable with respect 
to £*, . . . , £n, and also has a continuous mixed derivative d2<p/dt df7 which 
does not depend on the order of differentiation. 
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Further, we write down the fact that the functions <pl(t; r, £), . . . , 
<pn(t\ r, ξ) satisfy the system (33): 

| Ψ% r, © = f% <p\t; r, ©, . . . , ^n(*; r, ©), < = 1, . . . , n. (40) 

By what has been proved above, the functions φ\ί; r, £) are differentiable 
with respect to ξ1, . . . , £w, and the mixed derivative d2<pl(t;r, £)/dtd£k 

is continuous and does not depend on the order of differentiation, so that 
if we differentiate (40) with respect to £* and set r = £0> £ = xo> we ob
tain (37). If we differentiate the initial conditions 

v%;to,& = e 

with respect to £*, we obtain the initial conditions (38). Thus Theorem 15 
is proved. 

We remark that to form the system (37) of variational equations it is 
necessary to know only one solution, <p(t) = <p(t; to, Xo) of equation (34); 
knowing this solution, however, does not enable us to calculate the deriva
tives <p\(t) — (θ/θξΑ)<ρ\£; t0, £)Ι$=χο· Thus the calculation of these deriva
tives, knowing one solution x = <p(t), is reduced to the simpler problem 
of the solution of the linear system of equations (37). 

23. First integrals. We shall introduce here the concept of a first integral 
and solve a boundary-value problem for linear partial differential equa
tions. 

First integrals. Let 

xl = f\x\ . . . , **), i = 1, . . . , n, (1) 

be a normal autonomous system of equations whose right-hand sides, to
gether with their partial derivatives, are defined and continuous in some 
domain Δ of the space of the variables xl,. . . , xn

y and let 

x = f(x) (2) 

be the vector notation for this system. 
(A) A function 

u(xl, . . . , xn) = u(x)j 

which is defined and continuous, together with its partial derivatives, in 
a certain domain G contained in Δ, is called a, first integral of the system (1) 
if the substitution into (1) of an arbitrary solution x = <p(t) of (2) leads 
to an expression which is independent of t; that is, the function u(<p(t)) 
depends only on the choice of the solution <p(t), and not on t. Any first 
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integral u(x) of system (1) then satisfies the condition 

A du(x) „ Σ™/^) = 0, (3) 
i=\ 

and, conversely, any function u(x) which satisfies condition (3) is a first 
integral of the system (1). 

We shall prove that a first integral u(x) of system (1) satisfies (3). 
Let ξ be an arbitrary point of G and let x = <p(t, ξ) be a solution of equa
tion (2) with initial conditions 0, ξ. We have 

o = |itoi, ©)!,-. = Σ^Λο ; 
since ξ is an arbitrary point of G, relation (3) is fulfilled in G. 

Let us now assume that the relation (3) is fulfilled for the function 
u(x), and let x = <p(t) be an arbitrary solution of (2). Substituting x = 
<p(t) into u(x), we obtain a certain function 

v{t) = u(p(t)). 

By differentiating this function with respect to t, we obtain 

Thus u(<p(t)) does not depend on t. 
In what follows, a study of the first integrals of the system (1) will be 

carried out purely locally in a certain neighborhood of the point a of Δ 
which is not a state of equilibrium of the system (1): 

f (a) * 0. (4) 
(B) The first integrals 

ui(x), . . . , uk(x) 

of system (1), defined in a certain neighborhood of a [see (4)], are called 
independent at the point &, or simply independent, if the functional matrix 

/Wa)\ 
\ dxj / 

i = 1, . . . , fc, j = 1, . . . , n, 

is of rank fc. Thus the number of independent first integrals of system (1) 
cannot exceed n — 1, and if 

ϋι(χ) , . . . , t*n_i(x) 
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are independent first integrals, then any other first integral u(x) can be 
written in the form 

u(x) = t/(wi(x), . . . , wn_i(x)), (5) 

where U(ui, . . . , wn_i) is a certain function of n — 1 variables and (5) 
is an identity in x in a certain neighborhood of a. 

Let us prove proposition (B). Let 

i*i(x), . . . , un(x) (6) 

be a set of n first integrals of the system (1). By (A) we have 

Σ ^ / ι ' « = ο, ;=i , . . . ,n . 
2 = 1 

Since the vector f(x) is different from zero at the point a, then it is also 
different from zero in some neighborhood of a. Consequently, in that 
neighborhood the identity 

is valid. Thus the set of n first integrals cannot be independent. Let us 
now assume that the first n — 1 of the first integrals of (6) are inde
pendent; then by a known theorem of analysis it follows from (7) that the 
function un(x) may be expressed in terms of the remaining functions 
-Ui(x), . . . , iin_i(x), that is, identity (5) is valid for u(x) = un(x). Thus 
proposition (B) is proved. 

(C) There exist n — 1 independent first integrals of the system (1) 
in some neighborhood of the point a [see (4)]. 

Let us prove this. Since the vector f (a) is different from zero, at least 
one of its components is different from zero. We shall assume that 

/ n(a) * 0. 

Let ξ = (f1, . . . , ξη _ 1, an) be a point close to the point a, and let x = 
<p{t, ξ) be a solution of (2) with the initial conditions 0, ξ. This solution 
can be written in the coordinate form 

x* = Ψ% f1, · · · , Γ - 1 ) , t = 1, . . . , n. (8) 

We shall regard (8) as a system of equations in the unknowns 

i\ ■ · ■, ?-\ t. 0) 

For xl = a1, i = 1, . . . , n, this system of equations has the obvious 



184 EXISTENCE THEOREMS [CHAP. 4 

solution ξ1 = a1, . . . , ξ η _ 1 = an~1
J t = 0, and the functional determi

nant of the system (8) is different from zero at this point, since 

d<p\0, a , . . . , an~ ) _i . . 
^ _ > = 5y, * = 1, . . . , n, j = 1, . . . , n - 1, 

(10) 
[see (38) of §22], and 

/ n(a) * 0. 

Thus there exists a neighborhood G of the point a such that for x belonging 
to G, the system (8) is solvable for the unknowns (9), and the solution 
may be written in the form 

ξ1 = t*i(x), . . . , Γ " 1 = Un- lW, * = V(X). (11) 

We shall show that the functions 

tii(x), . . . , Wn-i(x) (12) 

in these relations are first integrals of the system (1) and, moreover, are 
independent at a. Since the functional determinant of system (8) has been 
found [see (10)], it follows that the functional matrix 

is a unit matrix, and therefore the functions (12) are independent. We 
shall show that they are first integrals of the system (1). Since the system 
(11) is the inverse of the system (8), the functions (12) satisfy the identities 

Ui(*(t, £)) = Γ, i = 1, . . . , n - 1. (13) 

Now let x = <p(t) be some solution of equation (2) passing through the 
domain G. Let t0, x0 be its initial values, with x0 belonging to G. Since 
the system (8) is solvable when x = x0, there exists a solution x = 
<p(t, £o) passing through x0, so that the solution <p(t) can be written in the 
form 

<p(t) = <p(t + c, ξ0), 

where c is a constant [see (B) of §15]. Thus, substituting x = <p(t) into 
the function w;(x), we obtain by (13) 

Ui(<p(.t)) = Ui(<p(t + c, fo)) = fo, ί = 1, . . . , n — 1, 

and proposition (C) is proved. 
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If certain first integrals of system (1) are unknown to us, then the solu
tion of system (1) can be facilitated in the same way. This case may be 
formulated precisely in the following proposition. 

(D) Let 
uk+1(x), · . . ,^n(x) (14) 

be a system of n — k first integrals, independent at the point a [see (B)], 
of the autonomous system (1). By using the functions (14), the order of 
(1) can be decreased by n — k, i.e., it can be replaced by an autonomous 
system of order k; in particular, when we deal with a maximal number 
n — 1 of independent first integrals, the autonomous system (1) can be 
reduced to the first order and therefore [see (B) of §2] can be solved by 
quadratures. 

We shall prove proposition (D). Since the first integrals (14) are inde
pendent, the functional matrix 

\d^~) ' * ' = * + ! , · ■ · , * , i = 1, . . . , n, 

contains a square matrix of order n — k whose determinant is different 
from zero. To be definite, we shall assume that the determinant of the 
matrix 

(ψ). «-*+! », 
is different from zero. We can now introduce in the neighborhood of the 
point a the new coordinates 

v\ ■ ■ ■, yn (15) 

in the place of the previous coordinates 

x\ .. . , xn 

by setting 

y1 = x\ . . . , yk = xk, 

yk+1 = uk+1(x), . . . , yn = un(x). (16) 

The new coordinates y1, . . . , yn are, in fact, introduced by these formulas, 
since the functional determinant of the system (16) is different from zero 
in the neighborhood of a. In the new system of variables (15) the system 
(1) takes the form 

t = g\y\ · · . , yn), f = 1 , . . . , n. (17) 
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But since every function (14) satisfies (3), we have 

gh+1(y) = o, . . . , sr(j) = o, 

and therefore the system (17) is actually an autonomous system of order k. 
Linear first-order partial differential equations. The relation (3) can be 

considered as a partial differential equation in the unknown function u(x) 
with variables xl, . . . , xn. Propositions (C) and (B) have shown that for 
/(a) ψ^ 0 there exist n — 1 independent solutions of this equation in the 
neighborhood of the point a, and that, having n — 1 independent solutions, 
we can obtain any other solution of this equation with the aid of formula 
(5). In this connection it is evident that every function given by (5) is 
a solution of (3), and therefore (3) can be regarded as solved. In other 
words, it has been shown that if we know how to solve (1), we also know 
how to solve (3). It is possible, however, to approach the solution of (3) 
from another point of view, that is, it is possible to pose and to solve a 
boundary-value problem for equation (3) and even for an equation of more 
general form than (3). 

(E) Let 

ΣΑχ)0=ίΤ(χ^) (18) 
be a partial differential equation in the unknown function u(x), where 
F(x, u) is a certain prescribed function having continuous first-order 
partial derivatives with respect to all its arguments. Further, let 

x = t(t\..., r-1) (19) 

be the vector form of a given (n — l)-dimensional surface which passes 
through the point a for tl = · · · = tn~l = 0, so that 

{(0, . . . , 0) = a. 

We shall assume that the surface (19) is differentiable and is not tangent 
to the vector f (a) at a so that the vectors 

θξ(0, . . . , 0) ^ ( 0 , . . . , 0) /(a) (20) 

are linearly independent. Finally, let 

no«1, - · · , tn~l) (21) 

be a certain function defined on the surface (19). Then, in the neighbor
hood of a, there exists (and uniquely, moreover) a solution u{x) of equation 
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(18) which coincides on the surface (19) with the given function (21), so 
that 

ι*(ί(ί\ . . . , t " - 1 ) ) = u0(t\...,tn-i). 

To find the solution u(x) we use the trajectories of the system (1), which 
start on the surface (19). These trajectories are called the characteristics 
of equation (18). 

Let us prove proposition (E). We introduce new coordinates into the 
neighborhood of a of the phase space of the system (1) in place of the 
coordinates x1, . . . , xn. Let x = <p(t, tl, . . . , tn~l) be a solution of equa
tion (2) which starts at the point {(21, . . . , tn~l) of the surface (19), so 
that its initial values are 0, ξ(ίι

9 . . . , tn~1). We then have the system of 
relations 

xi = φ% t1,..., r - 1 ) , i = 1, . . . , n. (22) 

If we consider as unknowns the variables 

t, t\ . . ., i"-\ (23) 

then for x = a this system has the obvious solution 

t = t1 = . . · = tn~l = 0, 

and its functional determinant does not vanish at this point, a fact which 
follows from the linear independence of vectors (20) [see §22, formula 
(38)]. Thus the system (22) allows us to introduce new coordinates (23) 
into some neighborhood of a in place of the coordinates x1, . . . , xn. In 
these new coordinates the form of (18) is particularly simple, and the 
boundary-value problem stated in proposition (E) can be easily solved. 
Let u(x) be a certain function defined in the neighborhood of the point a. 
Let us substitute into this function the variables (23) in place of the 
variables x1, . . . , xn according to (22); we then obtain the function 

We have 

dt ~ A ; οχ^ J Wf 

where x = <p(t, t1, . . . , tn~l). Thus, in terms of the variables (23), 
equation (18) will have the form 

dv(t,t\ t-1) = F{<p{t> t v _ _ ^ e_l)t p f t ^ ^ _) ί η _ 1 ) χ ( 2 4 ) 
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Since the surface (19) in the coordinates (23) is given by the equation 
t = 0, we must find a solution of equation (24) which reduces to the 
given function Uo(tl, . . . , tn~l) for t = 0. To find such a solution, it is 
necessary to solve (24) by regarding it as an ordinary differential equation 
with the independent variable t and the variables tl, . . . , £n _ 1 as param
eters. Moreover, we must find solutions with the initial values 

o, u0(t\..., r-1). 

The function v(t, t1, . . . , tn~1), obtained by virtue of Theorem 14, has 
continuous derivatives with respect to all variables. Thus the boundary-
value problem posed in (E) is solved. 

Note. Let 
xl = f% z1,..., xn) (25) 

be a nonautonomous system of differential equations. In order to in
troduce the concept of a first integral of this system, we shall transform 
it into an autonomous system by introducing the auxiliary unknown func
tion 

xn+l = t. 

Then system (25) augmented by the equation 

xn+l = 1 

will be autonomous; its first integrals may be taken as first integrals of 
the system (25). 

EXAMPLE 

Let 
H = H(x\ . . . , xn; y\ . . . , yn) = H(x, y) (26) 

be a function of two systems of variables. The system of ordinary differen
tial equations 

(27) 

is called a Hamiltonian system, and the function H(x, y) is the Hamil-
tonian function of this system. We see directly that the function (26) 
is a first integral of (27). 
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24. Behavior of the trajectories on large time intervals. In proving 
Theorem 2 (see §21) for the given initial values t0, Xo, a positive number r 
was found such that a solution x = <p(t) with these initial values exists 
on the interval \t — t0\ < r. Actually, the maximal interval of existence 
mi < t < m2 [see §3, (A)] of the solution x = <p(t) can be larger than 
the interval \t — to\ < r. However, the question of why the maximal 
interval of existence m\ < t < m2 can be bounded from one side or the 
other, or even bounded in general, has not been discussed up to this point, 
except in the case of Theorem 3, which dealt with the linear equation, 
where the problem was solved completely. In this section we shall answer 
further the question of why the maximal interval of existence can be 
bounded from one side or the other. 

(A) Let 
x{ = f(t, x1,..., xn), i = 1, . . . , n, 

be a normal system of differential equations whose right-hand sides, to
gether with their partial derivatives 

are defined and continuous in some domain Γ of the space R of the vari
ables t, x1, . . . , xn, and let 

x = f (*, x) (1) 

be the vector notation of this system. In addition, let E be a certain 
closed bounded set in Γ, and let 

X=<p(t) (2) 

be a certain solution of equation (1) with maximal interval of existence 
mi < t < m2 [see §3, (A)]. Thus, if the number m2 is less than + oo, 
there exists a positive number e2 such that for t > m2 — e2 the point 
(tj <p(t)) is outside the set E. In exactly the same way, if the number m\ 
is greater than — oo, there exists a positive number €X such that for 
t < ηΐχ + €i the point {t, <p(t)) is outside the set E. 

To prove proposition (A), we shall use the bound on the number r given 
in proposition (D) of §21. We shall consider only the case m2 < +oo 
since the case m\ > — oo is handled in the same way. We shall introduce 
a Euclidean metric into R. Since the set E and the complement of the 
set Γ are closed and E is bounded, the distance p between E and the com
plement of Γ is positive. This means that if the distance between the point 
(t0, x0) of E and the point (t, x) of R is less than p, then (t, x) must belong 
to the domain Γ. Now let E* be the set of all points of R whose distance 
to the set E does not exceed the number p/2. Then E* is contained in Γ, 
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so that the right-hand sides of the system (1) and their derivatives are 
defined on the set E*. Let us choose two positive numbers q and a, such 
that 

S2 + « 2 < @ 2 · (3) 

Let (t0, Xo) be a certain point of the set E and Π be the set of all points 
(t, x) which satisfy the inequalities 

\t — to\ < q, |x — Xo| < a. 

It is obvious from (3) that Π is contained in E*. Since E* is closed and 
bounded, it follows that for any point (2, x) of E*, the inequalities 

W,x)\<M, df%x) 
dxi < K, i,j = 1, . . . , n , 

are fulfilled, where M and K are certain positive numbers. Thus if the 
number r satisfies (16), (19), and (22) of §21, the solution x = <p(t) of 
equation (1) with the initial values (t0, Xo) is defined on the interval 
\t — 2o| < r. The only important fact here is that the number r which is 
found is the same for all points (t0, Xo) of the set E. Hence for the number 
e2 we may now take r. 

Let us assume the opposite, i.e., that for a certain t0 > m2 — r the 
point (to, <p(to)) belongs to the set E. Then we can take the values t0 and 
x0 = <p(t0) as initial values of the solution (2). By the bound given in 
proposition (D) of §21, the solution (2) is defined on the interval \t — to\ < r, 
which obviously falls outside the limits of the interval m\ < t < ra2. 
But this contradicts the fact that mi < t < ra2 is the maximal interval 
of existence of the solution (2). With this contradiction, proposition (A) 
is proved. 

(B) Let 
±i = f% x\ . . . , xn), i = 1, . . . , n, (4) 

be a normal system of equations, whose right-hand sides are defined and 
continuous, together with their partial derivatives dfl/dxJ, in some domain 
Γ of the space R of the variables ty x1, . . . , xn. Here Γ has a special form, 
i.e., it consists of all points of the form (t,xl, . . . ,xn), where t is an 
arbitrary number and the point (x1, . . . , xn) belongs to a certain well-
defined domain Δ of the space S of the variables x1, . . . , xn. In the par
ticular case when system (4) is autonomous, we can take Δ to be an 
arbitrary domain in which the functions fl and dfl/dxJ are defined and 
continuous, and then form Γ on the basis of this domain Δ. Let 

x = f (t, x) (5) 
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be the vector representation of the system (4), and let F be a certain 
closed, bounded set in Δ and x = <p{f) a certain solution of (5) with maximal 
interval of existence τηχ < t < ra2. Then if the number m^ is less than 
+00, there exists a positive number e2 such that for t > rri2 — €2 the 
point φ(ί) lies outside the set F. In exactly the same way, if the number 
mi is greater than — oo, there exists a positive number €χ such that for 
t < πΐχ + €i the point <p{t) lies outside F. 

As in the proof of (A), we shall confine ourselves to the case m2 < +oo. 
In order to reduce the proof of (B) to that of (A), we select in a suitable 
way a closed, bounded set E. Let m be an arbitrary number which satisfies 
the inequality m < m,2) we shall define E as the set of all points (£, x), 
where m < t < m2 and x belongs to the set F. By (A), there exists a 
positive number €2 such that for t > m2 — e2, the point (t, <p(t)) does 
not belong to E. We can assume here that e2 < W2 — rn, that is, 
m2 — €2 > m. Since the number t satisfies the inequalities m2 — e2 < 
t < ra2, so that the inequalities m < t < ra2 are satisfied, the point 
(tj <p{t)) need not belong to E because <p(t) does not belong to F. 

EXAMPLE 

To illustrate the results of this section, we shall consider a first-order 
autonomous equation 

* = wy (6) 

where f{x) is a polynomial all of whose roots are real and simple; let 
α,χ, a2, . . . , an be their enumeration in increasing order. The phase space 
of equation (6) is a straight line P, all of whose points can serve as the 
domain Δ with the exception of the points «i, a2, . . . , an, where the right-
hand side of (6) becomes infinite. If we set 

Fix) = / / (Ö « , 

then the set of all solutions of (6) is described by the relation 

F(x) = t + c. 

Since in an autonomous equation a constant time shift does not change 
the trajectories, the set of all trajectories of (6), together with the descrip
tion of the motion of x(t) along them, is given by the relation F(x) = t. 
Let us study the motion of x(t) along the interval α,χ < x < a2. Since 
f(x) does not change sign on the interval α,χ < x < a2, we have F(a,i) j£ 
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F{a2). To be definite, we shall assume that 

mi = F(ax) < m2 = F(a2). 

It is easy to see that as t traverses the interval m\ < t < m2j the point 
x(t) traverses the interval ai < x < a2. Hence it is obvious that mx < 
t < m2 is the maximal interval of existence of the corresponding solution. 
Here both endpoints of this interval are finite; on the basis of proposition 
(B), this is explained by the fact that in approaching the endpoints of the 
interval m\ < t < m2, the point x(t) approaches the boundary of Δ. 

25. Global theorems of continuity and differentiability. Theorems 13, 
14, and 15, which were proved in §22, establish certain properties of the 
solutions, i.e., continuity and differentiability with respect to the param
eters and the initial values. All these theorems, however, were of a local 
character, that is, they referred to sufficiently small intervals of time. In 
this section we shall prove the so-called integral theorems or global theorems 
of continuity and differentiability of a solution with respect to the param
eters and the initial conditions. The term "integral," as applied to 
Theorems 16, 17, and 18 to be proved here, has no relation to the operation 
of integration, but means that continuity and differentiability are estab
lished "integrally," i.e., on some "large" interval of time. 

The proof of the integral theorem of continuity (Theorem 16) differs 
from that of Theorem 13 and will be presented without reference to 
Theorem 13. The integral theorems of differentiability (Theorems 17 
and 18) are proved in exactly the same way as the corresponding local 
Theorems 14 and 15, so that their proofs will not be written out in detail. 

We shall consider the normal system of equations 

±i = f%x\ . . . , ^ , μ 1 , . . . ,μ ') , i = 1, . . . ,n , (1) 

whose right-hand sides depend on the parameters μ1, . . . , μι. System (1) 
may be written in vector form 

X = f(*,X,M), (2) 

and from now on we shall assume that the right-hand sides of (1) are de
fined and continuous, together with their partial derivatives 

^ % ^ = /K*,x,M), (3) 

in a certain domain Γ of the space Έ of the variables 

t, X1, . . . , Xn, μ 1 , . . . , μ1. 
Let 

Χ=φ(1,μ) (4) 
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be the solution of equation (2) with initial values t0, x0. I t will be proved 
that if the solution x = <p(t, μ0) is defined on the interval rx < t < r2j 
then when μ is sufficiently close to μ0, the solution (4) is defined on the 
same interval and the function (4) is continuous in (t, μ). In addition, 
under the hypothesis that the partial derivatives df/dßk exist and are 
continuous in Γ, it will be proved that (4) is differentiable with respect to 
the parameters μ1, . . . , μι for rx < t < r2 and for μ sufficiently close to 
μ0. It is from these theorems and the use of the construction (C) of §22 
that we shall prove the corresponding integral theorem of continuity and 
differentiability with respect to the initial conditions. 

I t is now clear that the content of this section is very similar to that of 
§22; the main difference is that we now assume that one solution <p(t, μ0) 
is given on a specific interval rx < t < r2, and the existence, continuity, 
and differentiability of the solution <p(t, μ) (for μ close to μ0) is established 
over the entire given interval r\ < t < r2. The situation is the same for 
the dependence on the initial conditions. 

Continuous dependence of the solutions on the parameters. We shall prove 
first the following proposition, which plays an auxiliary role in the proof 
of the integral theorem of continuity. 

(A) Let u(t) be a continuous function of t on the interval t0 < t < t\\ 
if u(t) satisfies the integral inequality 

u{t) < / (au{r) + ß)dr, a > 0, ß > 0, (5) 

on this interval, then the estimate, 

u(t) < -ß- (ea(<^o) _ 1} ( 6 ) 

is valid. 
For the proof we set 

v(t) = / (au{T) + ß)dr, (7) 
J to 

so that 

v(t) = au(t) + ß. 

From the last equality we have 
u(t) = i (v(t) - ß). 

Then, from the original inequality we have 

]■ (m -ß)< v(t), 
OL 
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or, what is the same thing, 

v(t) — av(t) < ß. 

If we multiply this last inequality by e~~at, we obtain 

v(t)e~at - v(t)ae~at = ~ {v{t)e~at) < ße~at. 

Integrating the last inequality from t0 to t and using the fact that 
v(to) = 0, which follows from (7), we find that 

v{t)e-at < £ (e-at0 - e-at), 
OL 

or 

v(t) < | (e
ait-t0) - 1). (8) 

From (7), (5), and (8), we obtain the required inequality (6). 

THEOREM 16. Let (t0, Xo, Mo) be a certain point of the domain Γ and let 

Χ=φ(1,μ) (9) 

be a solution of equation (2) which satisfies the initial condition 

<p(h,V>) = X0. 

If the solution 
X = <p(t, Mo) 

is defined on the interval rx < t < r2j then there exists a positive 
number p such that for \μ — μ0\ < p the solution (9) is defined on the 
same interval rx < t < r2 and the function <p(t, μ) is continuous in 
the variables £, μ for \μ — μ0\ < p, ri < t < r2. 

Proof. As the number t traverses the interval rx < t < r2, the point 
(t, <p(t, μ0), μο) describes some curve Q in the space Ίϊ. We shall construct 
a certain closed neighborhood Π of the curve Q. Let a and b be two positive 
numbers. We shall denote by Π the set of all points (ί, χ, μ) of S which 
satisfy the conditions r\ < t < r2, |x — <p(t, μ0)\ < a, \μ — μ0\ <b. 
From the fact that the solution <p{t} μ0) is continuous and passes through 
Γ it follows that there exist positive numbers a and b such that the set Π 
is contained in Γ. Henceforth we shall assume that a and b satisfy this 
condition. Since the derivatives (3) are continuous on the set Π and are 
therefore bounded in modulus by some number K on Π, it follows from the 
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inequality (6) of §21 that for any two points (Z, Xi, μ), (t, x2, μ) of Π we 
have the relation 

|fft x2, μ) - f(i, Xl, μ)\ < n2K\x2 - Xl | . (10) 

Further, from the uniform continuity of the function f (t} x, μ) on the set 
Π it follows that there exists a positive monotonic function /3(e) of € which 
tends to zero with e > 0, such that for any two points {t, x, μο), (t, x, μ) 
of Π the relation 

|f(i, x, μ) - f («, x, fi0)I < β(\μ ~ Mol) (11) 
is satisfied. 

Now let x = φ&μ), \μ — μ0\ < b, be the solution of (2) with initial 
values (2o, xd)· We shall assume that this solution is defined on the in
terval t\ < t < t2, where r\ < t\ < t0 < t2 < r2, and is completely 
contained in the set Π, that is, for h < t < t2 the point (t, <p(ty μ), μ) 
lies in Π. We shall estimate the difference \φ{ί,μ) — <p(t, μ0)\ on the 
interval. We shall carry out calculations only on the interval t0 < t < t2, 
since the calculations on the interval t\ < t < t^ are similar. 

Let us write equation (2) in the form of an integral [see §21, (A)] for 
both values of the parameters μ and μ0, and subtract the second integral 
from the first; we then obtain 

ft 

J t0 

to < t < t2 · 
Let us estimate the difference on the right under the integral sign. We have 

t, μ) — <p(t, Mo) = / [f(r, φ(τ, μ)}μ) — f(r, φ(τ, μ0), Mo)] dr, 

|f (r, φ(τ, /A), μ) — f (r, φ(τ, μ 0 ) , Mo) | < |f (r, φ(τ, μ), μ) — f (τ, φ(τ, /*0), Μ) | 

+ | f (^ <Ρ(Τ, Μθ), Μ) - f (τ, φ(τ, Μο), Μθ)|· 

The first term on the right-hand side can be estimated by means of the 
inequality (10) and the second by the inequality (11). Combining these 
two estimates, we obtain 

\<Ρ&μ) — ^ , Μ θ ) | < / [n2K · \φ(τ,μ) — φ(τ, μ0)\ + β(\μ ~ Μθ|)] dr. 
J to 

If we set u(t) = \<p(t, μ) — φ{ί, μ0)\, it follows from proposition (A) that, 
for t0 < t < t2 < r2, 

< β(1μ^μ°1) (en*K^ - 1) = Οβ(\μ - μο\). η2Κ 
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By making a similar estimate on the interval t\ < t < t0, we obtain 

\φ(1,μ) - φ(ί,μ0)\ < Οβ(\μ - μ0|). (12) 

Thus the estimate (12) is valid over the entire interval t\ < t < t2. 
Let p be a positive number which satisfies the inequalities 

P < 6, Cß(p) < a, (13) 

and μχ a fixed value of μ, for which 

|MI — Mol < Ρ· 

We shall show that the solution φ(ί, μ{) is defined on the entire interval 
?Ί < t < r2. 

Let mi < t < rri2 be the maximal interval of existence of the solution 
ψ{^ Mi) [see §3, (A)]. We shall show that m2 > r2 (the inequality nti < rx 
is proved analogously). For this we shall denote by E the set of all points 
(t, x, ft) of Π for which μ = μχ. Let us assume that m2 < r2. It then 
follows from (A) of §24 that the point (t, <p(t, μι), μχ) must leave the closed 
set E as t —» m2. This is possible only by violating the inequality 
\<p(t, Mi) — <p(t> Mo) I ^ «, since the inequality t < r2 holds by hypothesis. 
Since the inequality |^(£, μχ) — <p(t, μ0)\ < a is violated for some value 
of t, there exists a value of t, which we shall denote by t2, such that 

l*(*2,#*i) — *>(*2,Mo)| = a, 
\<p(t,M>i) — <p(t,t*o)\ < a* for t0 < t < t2. 

This is impossible, however, because of the estimate (12) [see (13)]. 
Thus the solution <p(t, μ) is defined on the entire interval rx < t < r2 

for \μ — μ0\ < p. Thus the first assertion in Theorem 16 is proved; we 
shall prove the second assertion, i.e., the continuity of the function 
<p(t, μ) for r\ < t < r2, \μ — μ0\ < p. We shall prove the continuity of 
<p(t, μ) at the point (*o>Mo)> where rx < t% < r2, \μ% — μ0\ < p. Since 
the solution <p(t, μ*) satisfies the hypotheses of Theorem 16, it follows from 
what we have already proved that there exist for it a positive number p*, 
analogous to p, and a function C*ß*(e), analogous to Cß(e). Now let μ 
be a value of the parameter satisfying the condition \μ — μ%\ < p* and 
t a number satisfying the condition r± < t < r2. Let us estimate the 
difference <p(t, μ) — <p{t%, μ%). We have 

\φ(ί,μ) — ^ 0 , Μ θ ) | < \ρ&μ) — φ&μζ)\ + fa(t, /*θ) ~ ^0 ,Μθ) | · 

The second term on the right-hand side tends to zero as t —> t% because 
of the continuity of <p(t, μ%) in t, while the first tends to zero as μ —> μ% 
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(uniformly with respect to t) because of the existence of C*0*(e). This 
proves Theorem 16 completely. 

Differentiability of the solution with respect to the parameters. 

THEOREM 17. Let us assume that the partial derivatives 

_θ_ 
θμ* el(t, x, μ) = j-j- f\t, x, μ), i = 1, . . . , n, k = 1, . . . , I, 

of the right-hand sides of the system (1) exist and are continuous in the 
domain Γ. Let (t0, x0, μο) be a certain point of Γ and 

x = *(*,#*) (14) 

a solution of equation (2) which satisfies the initial condition 

4>(h, M) = χο· (15) 

If the solution 
X = ρ(ί, μ0) 

is defined on the interval rx < t < r2, then there exists a positive 
number p' such that for \μ — μ0| < ?' the solution (14) is defined on 
the interval r± < t < r2 and has continuous partial derivatives 

the mixed partial derivatives 

d Vfe μ) 
dtdßk 

are also continuous and do not depend on the order of differentiation. 
In addition, the partial derivatives (16) satisfy on the interval ri < 
t < r2 the system of variational equations 

under the initial condition 

d<p\t0, μ) 
θμ^ 

= 0. 

Proof. The proof of Theorem 17 repeats almost verbatim the proof of 
Theorem 14 with the following modifications. The reference to Theorem 13 
is replaced by a reference to Theorem 16. In addition, the solution <p(t, μ) 
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is considered on the entire interval rx < t < r2, and not on the interval 
I* — *o| < f; the same is true of the functions (20) of §22. Analogous 
modifications must be made in order to prove proposition (B) below and 
Theorem 18. 

We shall now make one simple deduction from Theorem 17. 
(B) If all partial derivatives of the right-hand sides of system (1) with 

respect to the variables xl, . . . , χη, μ1, . . . , μι up to order m inclusive 
exist and are continuous, then the functions <pl(t, μ), i = 1, . . . ,w, which 
comprise a solution of (1) and satisfy the initial conditions (15), also 
have, for \μ — μ0| < p\ ^ι < t < r2 (where p ' is a sufficiently small 
positive number), continuous partial derivatives up to order m inclusive 
with respect to the parameters μ1, . . . , μι. 

[See the proof of proposition (B) of §22.] 
Continuous dependence and differentiability of the solutions in terms of 

the initial values. By means of the construction given in (B) of §22, we can 
obtain the following result from Theorems 16 and 17. 

THEOREM 18. Let 

x{ = f(t, x1,..., xn), i = 1, . . . , n, 

be a normal system of differential equations whose right-hand sides are 
defined and continuous, together with their partial derivatives 

in some domain Γ of the space of the variables t, xl
} . . . , xn. In addition, 

let 
x = f ft x) (17) 

be the vector representation of this system. If (t0, Xo) is an arbitrary 
point of Γ and if the solution 

x = <p{t) 

of equation (17) with the initial values t0, x0 is defined on the interval 
r\ < t < r2, then there exists a positive number p' such that for 

r\ < t < r2, \r — t0\ < σ', \ξ — x0| < σ', 

the solution 
X = i>(t, r, Ö 

of equation (17) with initial values r, ξ is defined and continuous in the 
variables t} r, ξ and has continuous partial derivatives with respect to 
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the components ξ1, . . . , ξη of the vector ξ, while the mixed partial 
derivatives 

ay (*, r, e 
dtd& 

are continuous and do not depend on the order of differentiation. In 
addition, the functions 

satisfy the linear system of equations (the variational equations) 

*i(o = Σ/&-*(ο)*ί(ο 
under the initial conditions 

<Pk(to) = 5jfc. 

(See the proof of Theorem 15.) 

(C) When the conditions of Theorem 18 are satisfied for any positive 
number €, a positive number δ can be found such that for \r — t0\ < 5, 
|{ — x0| < δ the inequality 

k f t T , « ) - *(Uo,*o) | < € (18) 

is valid for any 2 in the interval ri < t < r2. 
To prove this inequality, we note that for 0 < σ" < σ' the function 

^(i, r , £), which is continuous by Theorem 18, is uniformly continuous 
on the closed set defined by the inequalities 

\T - t0\ < σ", |f - x0| < σ", rx < t < r2. 

Thus for any positive e, a positive δ can be found such that for \r — t0\ < δ, 
\ξ — x0| < δ, |ίχ — t2\ < dj the inequality 

W 2 , T , { ) - *(*ΐ,*θ,Σθ)| < € 

is valid. Inequality (18) follows from this inequality for t\ = t2 = £. 



CHAPTER 5 

STABILITY 

The performance of numerous mechanical, electrical, and other types 
of devices (machines, instruments, etc.) is described by systems of ordinary 
differential equations. A system of ordinary differential equations always 
has an infinite number of solutions, and in order to find a certain definite 
solution it is necessary to specify its initial values. However, devices 
which are used in practice usually operate under completely well-defined 
conditions, and in their performance it is impossible, at first glance at 
any rate, to discover an infinite number of operational conditions which 
correspond to the various solutions of the system of equations. This can 
be explained either by the fact that the initial values of the solution are 
chosen at the start of the operation in a certain well-defined way, or by 
the fact that the initial values lose their effect during continued operation 
of the device, and the device itself stabilizes its operation at a stationary 
solution. We have already encountered the latter phenomenon when we 
analyzed the performance of electrical circuits. We shall give one more 
example. A clock runs with a completely prescribed amplitude of its 
pendulum, although when the clock is started, the pendulum can deviate 
either slightly or greatly from the vertical position. If in starting the clock 
the pendulum is not deflected sufficiently, then it will stop after a few oscil
lations. If the deflection is great enough, then after a short time the 
oscillation amplitude of the pendulum becomes quite well-defined, and the 
clock will run with this amplitude for an indefinite period of time, if not 
forever. Thus the system of equations which describes the performance 
of the clock has two stationary solutions: a state of equilibrium which 
corresponds to the rest position, and a periodic solution which corresponds 
to what we think of as the normal performance of the clock. Every other 
solution—and there are undoubtedly an infinite number of these solutions— 
approaches one of these two stationary solutions very rapidly, and after 
a short time becomes practically indistinguishable from it. Each of the 
two stationary solutions noted appears to be in a certain sense stable. 
This means that if we take a solution which is not stationary, but which 
deviates very little from a stationary solution at time zero, then the non-
stationary solution approaches the stationary solution. This is a definition 
of the stability of a solution, though not formulated in precise terms. From 
this example it is seen that the phase space of the system of equations which 
describes the performance of the clock decomposes into two attractive 
domains. If the initial value is taken in one of the domains, then the 

200 
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solution will tend toward the state of equilibrium; if the initial value is 
taken in the other domain, then the solution will tend toward the periodic 
solution. 

From what we have seen, it is clear that in order to understand com
pletely the performance of any device we must analyze the phase space 
of the system of equations which describes the performance of the device. 
Here it is most important to know all stable solutions of this system of 
equations. 

From the integral theorem on the continuous dependence of a solution 
on its initial values (see §25), we already know that if a definite finite 
interval of time is set, then for a sufficiently small deviation of the initial 
values, the solution will undergo only a small deviation on the entire 
time interval; this property of the solution, however, does not necessarily 
mean stability. Where stability is concerned, the deviation on an infinitely 
large time interval must be small only if the deviation from the initial 
values is small. 

The present chapter is devoted basically to the problem of stability of 
states of equilibrium and of periodic solutions. 

We also include two important applications to engineering problems: 
Vyshnegradskiy's work on the performance of a steam engine with Watt 's 
governor and Andronov's work on the operation of a vacuum-tube oscil
lator generating nondamping electrical oscillations. The first of these 
studies has been the basic principle in the theory of automatic control, 
and the second, in the theory of nonlinear oscillations. 

In §30 we shall study the behavior of trajectories close to the equilibrium 
states of a second-order autonomous system, a problem which does not 
pertain entirely to the stability problem. This section is somewhat more 
difficult than the average level of the book. Still more difficult in content 
is the last section of this chapter (§31). 

26. Lyapunov's theorem. We shall describe here the concept of 
stability and sufficient stability conditions in connection with the equilib
rium state of an autonomous system (see §15). 

The stability of an equilibrium state. Let 

4* = fix1, ...,xn), i=l,...,n, (1) 

be a normal autonomous system and let 

i = f (x) (2) 

describe the system in vector notation. We shall assume that the functions 

f(x\...,xn), i= Ι,.,.,η, (3) 
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are defined and have continuous first-order partial derivatives in a certain 
domain Δ of the space of variables x1,. . . , xn. Later, in establishing 
stability criteria, we shall strengthen the differentiability requirements 
by assuming that the functions (3) have continuous second-order partial 
derivatives in Δ. 

Without giving the formal definition of Lyapunov stability, we shall 
first try to convey the idea of stability. The equilibrium state a = 
(a1, . . . , an) of equation (2) should be considered stable if any solution of 
equation (2) starting at t = 0 from a point sufficiently close to a remains 
in the neighborhood of a during subsequent variation (i.e., for t > 0). 
The physical sense of stability is clear. A physical object (for example, 
some machine) whose motion is controlled by equation (2) can be in the 
equilibrium state a only if this state of equilibrium is stable, since a trivial 
deviation from the state of equilibrium caused by a random impulse can 
force the object far out of the state of equilibrium. 

Below, we shall denote by <p(t, g) the solution of equation (2) with initial 
values t = 0, x = £, so that <p(t, ξ) is a vector function of the scalar vari
able t and the vector variable ξ, which satisfies the condition 

P<P, & = t (4) 

Definition. The equilibrium state a of equation (2) is called Lyapunov 
stable if (1) there exists a positive number p so small that for \ξ — a| < p 
the solution <p(ty ξ) of (2) is defined for all positive values of t; (2) for any 
positive number e there exists a positive number δ < p such that for 
\ξ — a| < δ we have \<p(t, ξ) — a| < e for all t > 0. An equilibrium 
state a of equation (2) which is Lyapunov stable is called asymptotically 
stable if (3) there exists a small positive number σ < p such that for 
\ξ — a| < σ we have 

lim \φ(ί, 0 - a| = 0. 

We shall first give sufficient conditions for the stability of the equilibrium 
state for a linear homogeneous system with constant coefficients. 

(A) Let 
x = Ax (5) 

be a linear homogeneous equation with constant coefficients written in 
vector form. Its solution with initial values 0, £ will be denoted by 
φψ, £). If all eigenvalues of the matrix A have negative real parts, then 
there exist positive numbers a and r such that the inequality 

I*«,«)I <Aa\e-«\ t >0, (6) 
holds. It follows directly from (6) that the equilibrium state x = 0 of 
equation (5) is Lyapunov stable and asymptotically stable. 
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Let us prove inequality (6). Let us set 

A = (a}), L{p) = {a) - pi}). 

Then, by using the differentiation symbol p (see §7), equation (5) can be 
written in a scalar form as the system 

Σ L)(p)xj = 0, i = 1, . . ., n. (7) 
3 = 1 

Let Mji(p) be the minor of the element L)(p) of the matrix L(p) taken 
with the appropriate sign, so that the identity 

Σ ΜΊ(ρ)Ιΐ(ρ) = h)D{V) 
i=l 

holds, where D(p) is the determinant of L(p). By multiplying (7) by the 
polynomial Mki(p) and summing with respect to i, we obtain 

0 = Σ Σ M^LKp)^ = £ ήΌ^χΙ = D(p)**. 
2=1 y= i y= i 

Thus, if 
x = {x\ . . . , xn) 

is some solution of equation (5), then every function xl satisfies the differ
ential equation 

D(p)xi = 0. 

Since, by hypothesis, all roots of the polynomial D(p) have negative real 
parts [see §9, (A)], for the function x% the inequality 

| ^ | < Re'"*, i = 1, . . . , n, t > 0, 

holds, where R and a are positive numbers which do not depend on the 
number i. From this inequality follows the inequality 

|x| < \ / ^ Re-at, t > 0, 

which has already been proved [see §11, (B)] under more general assump
tions; here this proof will be carried out again. 

Let βί be the unit coordinate vector corresponding to i, so that 

e, = (0, . . . , 1, . . . , 0), 

where the ith place contains the number 1. Further, let ψ{(ί) be the 
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solution of (5) with initial value et·, so that 

lfc(0) = βί, i = 1, . . . , n. 

Then the solution \f/(t, f) of (5) with the initial value 

ξ = (t1, · . · , F ) 

can obviously be written in the form 

w, ö = Σ «Wo. (8) 
Since the inequality 

\ti(t)\ < VnRe-a\ t > 0, 

holds for every solution ψ%(ί), it follows that inequality (6) holds for the 
solution \f/(t, £). 

Lyapunov stability of the equilibrium state x = 0 follows directly from 
(6). Actually, if € is a given positive number, then it is sufficient to take 
for δ the number e/r. Asymptotic stability also follows from (6). 

The Lyapunov function. In establishing a criterion for the equilibrium 
state of the nonlinear system (1), the so-called differentiation with respect 
to a system of equations is used; this type of differentiation finds other 
applications in addition to the proof of Lyapunov's theorem. 

(B) Let 
F(x\ . . . , xn) = F(x) 

be some differentiable function of variables x1,. . . , xn defined in a domain 
Δ. Its /-derivative with respect to the system of equations (1) is de
fined at the point x = (x1, . . . , xn) in the following manner. Let <p{t) 
be a solution of equation (2) which at some value t = t0 satisfies the 
initial condition 

p(t0) = x. 
The derivative 

A»« 
with respect to system (1) is defined by the formula 

Λι>(*) = !*·(«>(*))Ιι-«ο, 

or by means of the total derivative formula 

^ΐ)(χ) = Σ ^ Γ / ί ( χ ) · (9) 
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From formula (9) it is evident that the derivative F{1)(x) does not depend 
on the solution φ(ί) but is determined uniquely by the choice of the point x. 

We shall now prove a property of an autonomous system. 
(C) The solution of the autonomous system (2) with initial values 0, ξ 

will be denoted as before by <p(t, 0 . The function <p(t, 0 satisfies the 
identity 

*(*,*(«, 0 ) = *(β + ί ,0 · (10) 

We shall prove formula (10). Let us set 

Ί = *(*, 0 , (11) 

where s is a fixed number, and consider the solution 

<Pl(t) = φ(ί9η) 

of equation (2). Since <p(t, 0 is a solution of (2) and since this equation is 
autonomous [see §15, (A)], the function ^(O? which is determined by 
the relation 

P2(t) = <p(t + s, 0 , 

is also a solution. We thus have two solutions, <p\{t) and ^(0> of equation 
(2). Furthermore, 

*i(0) = φφ,η) = Ί 
[see (4)], and 

φ2(0) = <p(s, f ) = if 

[see (11)]. Therefore, since the solutions φχψ) and φ2{ί) have common 
initial values, they coincide and relation (10) holds. 

In the proof of Lyapunov's theorem the basic role is played by a certain 
positive definite quadratic form called the Lyapunov function. First we 
shall note certain properties of positive definite quadratic forms [see (D)], 
and then we shall construct the Lyapunov function itself [see (E)]. 

(D) Let 
x = (x\ . . . , **) (12) 

be a variable vector in an n-dimensional space. By a quadratic form of 
the vector x we shall mean a function W(x) determined by the formula 

W(x) = Σ WijxW, 

where wi3· = w^ are real numbers. The quadratic form W(x) is called 
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positive definite if f or x ^ 0 we have 

W{x) > 0. 

We find that for any positive definite quadratic form TF(x), it is always 
possible to choose two positive numbers μ and v such that the inequality 

μ|χ|2 < W(x) < v\x\2 (13) 

holds for an arbitrary vector x. From this it follows that for an arbitrary 
x [see (12)] the inequality 

\A<yJlw(x) (14) 
holds. 

We shall prove the existence of the numbers μ and v. For this we shall 
consider the values of the function Ψ(ξ) when the vector ξ belongs to 
the unit sphere, i.e., when ξ satisfies the condition 

I€l = 1· (15) 

Since the sphere (15) is a closed bounded set and the function W(i-) is 
continuous, it attains its minimum μ and its maximum v on the sphere (15). 
Since all vectors of the sphere (15) are nonzero, the numbers μ and v are 
positive. Let x be an arbitrary vector; then we have x = Xf, where the 
vector ξ belongs to the sphere (15) and therefore the inequalities 

μ < W(£) < v 

hold for the vector £. By multiplying this last inequality by λ2, we obtain 
the inequality (13). 

We shall now proceed to the construction of the Lyapunov function. 
(E) Let 

n 
x1 = ]T) a)x\ i = 1, . . . , n, (16) 

i = i 

be a linear homogeneous system of equations with constant coefficients, 
where all eigenvalues of the matrix A = (a}) have negative real parts. 
Then there exists a positive definite quadratic form W(x) whose derivative 
with respect to the system (16) [see (B)] satisfies the inequality 

TT(i6)(x) < ~ßW(x), (17) 

where x is an arbitrary vector and ß is a positive number independent of x. 
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Let us construct the form W(x). We shall assume that the system (16) 
is the scalar form of the vector equation (5). The solution of (5) with initial 
values 0, £ will be denoted by ψψ, ξ) as in proposition (A); we then have 

*<f, *) = Σ «V<(0 (18) 

[see (8)]. We now form 

W{&= ί \ψ{τ, ί ) | 2 dr. (19) 
Jo 

It follows from (18) that 

ΤΓ(«)= Σ *V/ {Ur),Ur))dr. (20) 

Since every function ψ{({) satisfies (6), each improper integral on the right-
hand side of (20) converges, so that W(x) is a quadratic form for the vector 
ξ. This quadratic form is positive definite, since for { ^ 0 the integrand 
of (19) is positive, so that W(i;) > 0. Let us now calculate the derivative 
T (̂i6)(€) of the function W(£) with respect to the system (16). To do this, 
according to the hypotheses of (B), we draw the solution ψ(ί, ξ) through 
the point ξ and then calculate the derivative of the function W[Y(t, £)] 
at t = 0. We remark first that, as a consequence of (C), 

Ψ(τ, *(t, 0 ) = φ(τ + t, «), 
so that 

W(iKi ,0)= / \ψ(τ,φ(ί,ξ))\2άτ Jo 
/•00 /»0O 

= / m + T, ξ)\2 dr = / \ψ(τ, f)|2 dr. Jo Jo 
Thus we have 

/

GO 

hKr,f)|2dr 

= - | * ( f , € ) l V o = -l«l2· 
We have thus obtained the equality 

^<16)(S) = H*|2, 

but, by the second of the inequalities (13), we have 

i = 0 

- i r < - j w®, 
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and therefore we obtain 

#αβ)(ί) < - \ W®. 

Thus inequality (17) is proved. 
Lyapunov's theorem. Let us proceed, finally, to the formulation and 

proof of Lyapunov's theorem. 
Let 

a = ( a 1 , . . . , a») 

be an equilibrium state of the autonomous system (1). We shall set 

xl = a1 + Ax\ i= 1, 2, . . . , n, (21) 

and take as new unknown functions the quantities 

Ax1, . . . , Axn. (22) 

Substituting (21) into the system (1) and expanding the right-hand sides 
into Taylor series in the variables (22), we obtain 

Ax< = f'(a) + Σ ^ Δζ' + R\ i = 1 , . . . , n, (23) 

where Rl is an infinitesimal of the second order with respect to the un
knowns (22). Since a is an equilibrium state of the system (1), 

f (a) = 0; 
in addition, if we set 

we can write (23) in the form 

Mi = ] p a) Axj + R\ i = 1, . . . , n. (25) 

THEOREM 19. If all eigenvalues of the matrix A = (aj) [see (24)] have 
negative real parts, then the equilibrium state a of the system (1) is 
asymptotically stable; more precisely, there exists a positive number σ 
so small that for |ξ — a| < σ, the inequality 

kf t «) - a| < r\i - &\e-at, (26) 

holds, where r and a are positive numbers which do not depend on ξ. 
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Proof. We shall assume that the equilibrium state a of (1) coincides with 
the origin, i.e., that a = 0. This can always be attained by parallel trans
lation of axes; the matrix A is invariant under this transformation. As
suming that a = 0, we have 

Ax1 = x\ 

so that system (25) may be written in the form 

xl = J2 a>W + R\ i = 1, . . . , n, (27) 
i = i 

where 

K - 2 L dxidx* XX-

Now let W(x) be a Lyapunov function [see (E)] for the linear system 
n 

**' = Σ a ^ > < = 1, . - . , n, (28) 
J=I 

which can be obtained from (27) by linearization, that is, by discarding 
the remainder terms R\ If we calculate the derivative W{27)(x) of the func
tion W(x) with respect to the system (27), we have 

w^(x) = Σ -βϊτ-α^ + Σ -^τ R 

i,j—l i=l 

= i»wx) + Σ aJg^ «'· 
t = l 

Since the function W(x) satisfies (17), we have 

iW«) < « + Σ ^ v-
Let us now choose a positive number b so small that for 

W(x) < b (29) 

the vector x will belong to the domain Δ [such a number exists by virtue 
of (13)]. Since the second derivatives d2fl(dx)/dxj dxk, being continuous 
functions, are bounded in the ellipsoid (29), they are also bounded in the 
ellipsoid 

\R{\ < k\x\2 < \w{x), 
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where k is a certain constant. Furthermore, since dW(x)/dxi is a linear 
form in x1, . . . , xn, then 

'dW(x) 
dxi 

< 1\/Ψ(Χ), 

where I is a certain constant [see (14)]. Thus there exists a positive number 
q such that for W(x) < b we have 

Σ nBr «' < #^)3/2· . , dx 

If we now choose a positive number c in such a way that 
o 

c < b, qy/c < -^ > 

we have 
W(27)(x) < - | TT(x) 

whenever the inequality 

W(x) < c (30) 

is satisfied. If we set a = 0/4, we obtain the inequality 

TT(27)(x) < -2αΤΓ(χ), 
which is valid if inequality (30) holds for x. 

Let ξ be an interior point of the ellipsoid (30), i.e., a point satisfying the 
inequality 

W(& < c. (31) 

We shall denote the solution of (27) with the initial values 0, ξ as before 
by <p(tj {), and we set 

The function w{t) is defined for all those values of t > 0 for which the 
solution <p(t, ξ) is defined, and by (B) it satisfies the condition 

w{t) < -2aw(t) (32) 

whenever 
w(t) < c (33) 

holds. If the solution φ{1, ξ) does not exist for all positive values t, then 
the point x = <p(t, ξ) must necessarily leave the ellipsoid (30) with in-
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creasing t [see §24, (B)]. Let us assume that the point x = <p(t, ξ) leaves 
this ellipsoid, and let tr > 0 be the first value of t for which the point crosses 
the boundary. Then on the interval 0 < t < t' the point φ(ί, ξ) belongs 
to the ellipsoid (30) so that (32) holds and w(t) is not positive. Con
sequently we have a contradiction: c = w(t') < w(0) < c. 

Thus the solution <p(t, £), as well as the function w{t), is defined for all 
positive values of ty and inequality (32) holds for all these values. If 
ξ 9^ 0, then w(t) > 0, and we can carry out the following calculations, 
beginning with inequality (32): 

M<_2a; f *& Λ < -2d, for t>0; 
w(t) - Jo w(t) - - ' 

In w(f) — In w(0) < —2at. 

The last inequality gives 

W{<p{t, {)) < W(ξ)β-2°*. 

Combining this inequality with (13) we obtain 

k ( U ) | 2 < V~ \tfe-2at, ί > 0, (34) 
M 

which is valid whenever (31) holds for £. 
Inequality (31) follows from the second of the inequalities (13), together 

with the relation 

\i\<* = <y[y (35) 

Thus if (35) is valid, then inequality (34) is also valid, and if we take the 
square root of (34), we obtain the inequality 

Wit, Öl < yjV- |£|e-ai, t > 0, 

which coincides with (26), where r = y/v/μ and a = 0. Thus Theorem 19 
is proved. 

The following proposition (Γ) describes a case which is in a certain sense 
opposite to that considered in Theorem 19. 

(F) The equilibrium state a of equation (2) will be called completely 
unstable if there exists a positive number σ such that any solution <p(t, £) 
of equation (2) starting at the point { ^ a of the sphere \ξ — a| < σ 
leaves this sphere and does not return to it. That is, there exists a positive 
number T = Τ(ξ) such that for t = T the solution <p(t, ξ) is defined, and, 
for all values t > T for which this solution is defined, it satisfies the in-
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equality \<p(t, ξ) — a| > σ. It turns out that if all eigenvalues of the 
matrix (dfl(a)/dxj) have positive real parts, then the equilibrium state a 
of equation (2) is completely unstable. 

To prove proposition (F) we shall use certain results established in the 
proof of Theorem 19; here, as before, we shall assume that a = 0. In 
order to prove this, let us consider along with equation (2), for which 
all eigenvalues of the matrix (dfl(a)/dxj) have positive real parts by hy
pothesis, the equation 

± = - / « , (36) 

for which the point 0 obviously satisfies the conditions of Theorem 19. 
By virtue of the construction given in the proof of Theorem 19, a Lyapunov 
function W(x) exists for equation (36) and satisfies the inequality 

#(8»(x) < -2aW(x) 

under condition (30). Writing out explicitly the left-hand side of this 
inequality [see (9)], we obtain 

w = Σ ^ (-/*'«) ^ -2«^w ^ < 3 6 Κ - , ^ δχί 

or 
^(i)(x) > 2aW(x). 

This inequality is automatically valid whenever (30) holds. Now let £ 
be some interior point of the ellipsoid (30) [see (31)]. Let us set 

W(t) = W(p(t,&). 

The inequality 

w(t) > 2aw(t) (37) 

holds for the function w(t) whenever the inequality 

w(t) < c 
is valid. Since ξ τ* 0, then w(t) > 0 and the following calculations can 
be carried out, starting from inequality (37): 

m > 2a; *&&> 2at, for t > 0; 
w(t) - Jo w(t) 

[ Έ1 
Jo w\ 

w(t) > w(0)e2at; W(<p(t, £)) > Ψ(ξ)β2αΚ 

From the last inequality it follows that, as t increases, the point x = 



27] THE CENTRIFUGAL GOVERNOR 213 

<p(t, ξ) goes out to the boundary of the ellipsoid (30) and hence leaves the 
interior. We shall show that it then cannot return to the interior of the 
ellipsoid (30). If we assume the opposite, then we could find a positive 
value t' such that w{t') = c and, for all sufficiently small positive values 
of Atj the inequality w(t' + At) < c would hold. From the last two 
relations it would follow that w(t') < 0, thus contradicting (37) which 
holds for t = tf, since w{tf) = c. Thus we have proved that the trajectory 
x = φ^ {)? where ξ ?* 0 is an interior point of the ellipsoid (30), must 
leave the ellipsoid (30) and cannot return to it. From the second of the 
inequalities (13) and from the inequalities (35) we obtain (31), so that 
the sphere (35) is contained in the ellipsoid (30). What we have proved, 
in view of this fact, implies the validity of the assertion (F). 

EXAMPLE 

As a supplement to (A) we shall show that if the matrix A has an eigen
value λ with a positive real part, then the equilibrium state x = 0 of 
equation (5) is no longer Lyapunov stable. Actually, by (A) of §14, the 
solution of (5) is a vector function x = cheXi, where c is an arbitrary real 
constant and h is an eigenvector of the matrix A with the eigenvalue λ. 
If λ is a real number, then for sufficiently small c the solution starts at the 
point ch, which is arbitrarily close to the equilibrium state x = 0, but 
whose modulus becomes arbitrarily large with time. If λ is a complex 
number, then the solution c(heu + heu) of equation (5) has the same 
property. 

27. The centrifugal governor and the analysis of Vyshnegradskiy. In 
modern technology, thanks to the abundance of automatic control devices, 
a large role is played by the theory of automatic control. One of the most 
important problems arising for the designer of an automatic control de
vice is that of the operational stability of a machine-control system. This 
problem can be solved in many cases on the basis of Lyapunov's theorem 
(see §26). 

The oldest existing automatic control system is the system of the steam 
engine and Watt's centrifugal governor. The centrifugal governor, which 
at the end of the 18th and the first half of the 19th centuries handled its 
task quite adequately, began to operate unreliably because of design 
changes in the middle of the 19th century. A number of theoreticians and 
engineers sought a way out of the crisis that had arisen. The problem was 
solved with complete clarity and simplicity by the outstanding Russian 
engineer Vyshnegradskiy, one of the originators of the theory of auto
matic control. Vyshnegradskiy's work, Direct-action governors (1876), was 
one of the first studies in the theory of machine control which sought to 
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Centrifugal 
governor 

FIGURE 46 

answer questions raised by industrial practice. In the present section, 
Vyshnegradskiy's study is presented in a simplified form. 

The centrifugal governor (Fig. 46) is a vertical spindle or rod S which 
can rotate about its vertical axis, at the upper end of which are attached 
on hinges two identical arms L\ and L2 with identical weights at their 
ends. The arms Li and L2 are joined together by supplementary links so 
that they can only deviate from the vertical position simultaneously by 
the same angle φ, and they lie in a common vertical plane which contains 
the spindle S. When the arms L\ and L2 deviate from their vertical posi
tion by an angle <p, they set in motion with the aid of the links a special 
sleeve AT, which is fitted on the spindle S so that the distance from this 
sleeve to the upper end of S is proportional to cos φ. The length of the 
vertical arms Lx and L2 will be taken as unity, and the mass of each of 
the weights fixed on their ends will be denoted by m. If the spindle S 
rotates with angular velocity 0 and the arms Lx an'1 L2 are inclined from 
the vertical position by an angle φ, then each of the weights is subject to 
the centrifugal force 

πιθ2 sin φ. (1) 

Simultaneously, a gravitational force equal to 

mg (2) 

acts on each weight. Since the forces acting upon the weights in the direc
tion of the arm L; are balanced by the reaction of arm Lt-, then, in order to 
calculate the force acting on the weights, it is necessary to resolve both of 
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— mg sin φ 

FIGURE 47 

these forces in the direction of the axes, the first of which is parallel to 
the arm and the second perpendicular to the arm, i.e., in the direction of 
increasing φ. It is immediately seen (Fig. 47) that the component of the 
force (1) in the direction of increasing φ is equal to 

τηθ2 sin φ cos φ. (3) 

and the component of the gravitational force (2) in the same direction is 
equal to 

—mg sin φ. (4) 

Thus the resultant of the two forces (3) and (4) is given by the formula 

mB sin φ cos φ — mg sin φ. (5) 

is The simplified version of the performance of a centrifugal governor .„ 
that for a given angular velocity 0, the arms L\ and L2 deviate by an 
angle φ under the action of forces (1) and (2); the angle φ may be de 
termined from the equality 

md2 sin φ cos ψ — mg sin φ = 0, (6) 

i.e., by equating the force (5) to zero. The relation (6) determines the 
angle ^ a s a single-valued monotonic increasing function of the velocity 0; 
in this sense, Watt's governor can be considered as a measure of the velocity 
of rotation. This is the so-called static study of a governor. In reality, we 
have here a dynamic phenomenon. Under the action of the force (5), the 
mass m performs a motion described by a differential equation. In addition 
to the force (5), the mass m is acted upon during its motion by a frictional 
force in the hinge joints. This force depends in a rather complex manner 
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on the motion which takes place. Simplifying substantially the com
plexity here, we shall assume that the frictional force is proportional to 
the velocity φ of the motion of the mass m and that its sign is opposite 
to that of φ} i.e., it has the value 

—b<P, 

where 6 is a constant. Thus, if we take φ as the coordinate which de
termines the position of the mass m, then we obtain for φ the differential 
equation 

πιφ = τηθ2 sin φ cos φ — mg sin φ — ί̂ >. (7) 

[The calculation of the force (5) is carried out here under the assumption 
that 0 and φ are constants. For variable 0 and <p, additional forces enter, 
which, however, are balanced by the reactions of the arms and of the 
hinges which force the arms to move in a plane. Thus equation (7) turns 
out to be valid.] 

The steam engine is represented by a flywheel with moment of inertia J , 
which is set into rotary motion by the force of the steam and is capable of 
performing useful work (for example, hoisting a cage from a mine). The 
differential equation of a steam engine can thus be written in the form 

Ja> = P1- P, (8) 

where ω is the angular velocity of the rotation of the flywheel, Ρχ is the 
moment due to the action of the steam, and P is the moment due to the 
weight of the cage acting on the flywheel. The moment Ρχ depends on 
how much the valve is opened to admit steam into the cylinders of the 
steam engine, and the moment P depends on the load of the cage. 

The centrifugal governor is connected to a steam engine in order to 
maintain a uniformity of operation. It "measures" the speed of rotation 
of the flywheel and, if it is too great, decreases the supply of steam; if it 
is too small, it increases the supply of steam. To this end, the flywheel 
of the steam engine is connected by a set of gears with the spindle of the 
governor (Fig. 46) so that between the angular velocities ω and 0, there 
exists a constant relation 

0 = ηω, (9) 

where n is the so-called transmission ratio. This is the effect of the engine 
on the governor, as a result of which the flywheel speed is measured. On 
the other hand, the sleeve M of the governor is connected with the valve 
which admits the steam, so that 

Pi = Fi + fc(cos φ — cos <p*)f (10) 
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where φ* is a certain "mean" value of φ near which the regulated value φ 
must be maintained, Pi is the value of the force due to the action Pt 
of the steam at φ = φ*, and k > 0 is a constant factor of proportionality. 

As is obvious from (10), the reverse action of the governor on the steam 
engine is realized in such a way that as the angle φ increases, the supply 
of steam (together with the force due to the action P i of the steam) de
creases. As a result of the interaction described between the engine and 
the governor, the latter, it would seem, completely accomplishes its task, 
increasing the steam supply when the flywheel speed decreases and de
creasing the steam supply when the flywheel speed increases. In this 
connection, it is natural to expect that the rotational speed of the flywheel 
will be stabilized. This was in fact observed in steam engines built before 
the middle of the nineteenth century. In order to explain the reasons for 
the breakdown in performance of the governor in steam engines, which 
began to be observed after the middle of the 19th century, it is necessary 
to make a detailed study of the dynamics of the performance of the engine-
governor system and of its stability, which is what was done by Vyshne-
gradskiy. 

As is evident from relations (7) to (10), the engine-governor system is 
described by the two differential equations 

m<j> = mn2u>2 sin φ cos φ — mg sin φ — hip. 
(11) 

Ju) = k COS φ — F, 

where F = P — Px + k cos φ* is a quantity which depends on the load. 
The first of these equations is of second order. To reduce this system to 
a normal form we shall introduce a new variable ψ by setting 

so that system (11) may be written in the normal form 

Φ = Ψ, 

Φ = η2ω2 sin φ cos φ — g sin φ ψ, (12) 
m 

k F ω = -j cos φ j ' 

The satisfactory performance of a steam engine requires that the angular 
speed ω of the flywheel remain constant both for a fixed load P , i.e., for a 
constant P, and for a stationary steam supply valve. Because of the latter 
requirement the angle φ remains unchanged. Thus it is a matter of seeking 
a solution of the system (12) of the form 

Ψ = <Po, Φ = 0, ω = ω0, 
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i.e., finding the state of equilibrium of this system. The problem is that of 
finding the state of equilibrium of system (12) and then studying its 
stability. 

By equating to zero the right-hand sides of (12) and solving the re
sulting equations, we find the coordinates of the equilibrium state 

Ψο = 0, 

F 
COS <p0 = -^ i (13) 

2 2 
n ω0 

g 
cos φο 

Let us set 

Ψ = <Po + Δ<ρ, ψ = ψ0 + Αψ, ω = ω0 + Δω. 

As a result of such substitution and linearization of equations (12), we 
obtain the system 

Αφ = Αψ, 

Δψ = η2ωΙ cos 2φ0 Αφ + η2ω0 sin 2φ0 Αω — g cos φ0 Δφ Δ^, 

k Δώ = γ sin <po Αφ. 

Substituting into the second of these equations the value of n2u>l given 
in (13), we obtain, after a simple calculation, 

Αψ = cos <po m ωο 

The characteristic polynomial of the linear system of equations obtained 
for Αφ, Αψ, Αω is 

-p 1 0 

D(p) = 
COS φο 

— j Sin φ0 

m 
V 

2g sin <p0 

ω0 

—V 

or, after calculating the determinant and multiplying it by — 1 , 

-Z)(p) = p» + 1 p» + *«5- i8p + 
v ^ * mr cos φ0

 r 

2kg sin <p0 

Jo)0 
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All coefficients of this polynomial are positive, and therefore the necessary 
and sufficient condition for its stability is (by Theorem 6) that the in
equalities 

b g sin2 φ0 2kg sin2 φ0 

m cos <po JCUO 

or 
bJ_ 2k cos <PQ _ 2F , . 
m ωο coo 

[see (13)] are satisfied. Relation (14) represents, by Lyapunov's theorem 
(Theorem 19), the sufficient condition for the stability of the engine-governor 
system. 

In order to clarify the meaning of the right-hand side of the last in
equality, we shall introduce the concept of nonuniformity of performance 
of a steam engine, which plays an important role in engineering. From 
(13) it is evident that changing the value F = P — Fx + k cos <p* (i.e., 
changing the load P) alters the stable speed ω0. The quantity άω0/άΡ 
characterizes the rate of change of ω0 when the load P is changed. Its 
absolute value v = |dco0/dP|(as we shall soon see, the derivative dco0/dP 
is negative) is called the nonuniformity of performance of the steam 
engine. By (13) we have 

Fco2 = const, 

and therefore by differentiating, we obtain 

d(*)o o)o 
IF ~ ~ 2F' 

Thus 
ω0 

and the stability condition (14) may be rewritten in the· final form 

— ·ν>1. (15) 
m v 7 

From formula (15) Vyshnegradskiy made the following deductions: 
1. An increase of the mass m of the balls has a harmful effect on the 

stability. 
2. A decrease of the coefficient of friction b has a harmful effect on 

stability. 
3. A decrease of the moment of inertia J of the flywheel has a harmful 

effect on stability. 
4. A decrease of the nonuniformity v has a harmful effect on stability. 
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In order to make his conclusions accessible to engineers and to attract 
attention to the more important results, Vyshnegradskiy formulated his 
famous "theses" at the end of his work. 

First thesis. The cataract (friction) is an essential element of a sensitive 
and correctly operating governor, or briefly, "without a cataract, there 
can be no governor." 

Second thesis. Astatic governors (i.e., governors with zero nonuniformity) 
should not be used even with the cataract, or briefly, "without nonuni
formity, there can be no governor." 

The breakdown in the performance of governors in the middle of the 
19th century is explained by the fact that, due to the development of 
engineering, all four quantities appearing in (15) were subjected to changes 
which served to diminish the stability. Specifically, because of the in
creasing weight of the valve (in connection with the growth of engine 
power), heavier balls were being used. Improved machining of the surfaces 
of the engine parts led to a reduction in friction. The increase of the 
operating speed of the engines made it necessary to decrease the moment 
of inertia J of the flywheel. Finally, the tendency to decrease the de
pendence of speed on load led to the reduction in nonuniformity of per
formance. 

Having explained the unfavorable effects of all the factors indicated, 
Vyshnegradskiy recommended in his theses an artificial increase of friction 
(by means of a special device, the cataract) and an increase of the non-
uniformity of performance (by changing the numbers n and k, which de
pend on the design of the engine). 

28. Limit cycles. In this section we shall define, and to a certain degree 
study, the concept of limit cycle which was introduced by the French 
mathematician Poincaro; we shall also give a criterion for establishing the 
existence of a limit cycle. It should be noted that at the present time the 
concept of limit cycle plays a most important role both in the theory of 
ordinary differential equations and in its applications in engineering. 

We shall investigate the normal autonomous system (see §15) of equa
tions 

** = f\x\ . . . , xn), i = 1, . . . , n, (1) 

whose right-hand sides are defined and have continuous partial derivatives 
dP/dx3 in a certain domain Δ of the phase space R of the variables x1, . . . , 
xn. We shall also use the vector form of this system 

x = f(x). (2) 

The most essential considerations of this section will be concerned with 
the case n = 2. In order to emphasize that this case is two-dimensional, 
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we shall speak about the phase plane P of system (1) and not about its 
phase space R. In the study of phase planes, intuitive geometrical con
structions will play an essential role. The case when the domain Δ coin
cides with the entire phase plane P is by no means trivial, and, for the sake 
of simplicity, our entire attention can be concentrated on it. 

The limit cycle and the behavior of trajectories in its vicinity. By a limit 
cycle of equation (2) (n = 2) we shall mean an isolated periodic solution 
of this equation. More precisely, let x = <p(t) be a periodic solution of (2) 
and let K be the closed curve in the plane P described by this solution. 
The solution x = <p(t) (and also the trajectory K) is assumed to be an 
isolated periodic solution and is called a limit cycle if there exists a positive 
number p such that for any point £ in the plane P , whose distance from K 
is positive and smaller than p, the solution of (2) passing through the point 
ξ is not periodic. 

This means geometrically that there can be no other closed trajectories 
of this equation in the vicinity of the closed trajectory K. The question 
of how the trajectories of equation (2) behave in the neighborhood of a 
limiting cycle K is answered by the following theorem. 

THEOREM 20. Let x = <p(t) be a limit cycle of equation (2) (n = 2) 
and K a closed trajectory described by this solution in the plane P. The 
closed curve, as is known, separates the plane into two domains, an 
interior and an exterior; since the trajectories of (2) cannot intersect, each 
trajectory distinct from K is interior or exterior to the trajectory K. 
I t is found that for exterior as well as for interior trajectories there are 
two mutually exclusive possibilities of behavior in the neighborhood of K. 
That is, all interior trajectories starting in a neighborhood of K spiral 
around K, either as t —► +oo [Fig. 48(a)] or as t —* — oo [Fig. 48(b)]. 
The same is true also for exterior trajectories [Figs. 48(a) and (b)]. 

If all trajectories (both interior and exterior) start in the neighborhood 
of K and spiral toward K as t —» +oo, then the limit cycle is called 
stable [Fig. 48(a)]. If all trajectories starting in the neighborhood of K 
spiral away from K as t —> — oo, then the limit cycle is called completely 
unstable [Fig. 48(b)]. In the two other cases (i.e., if the interior trajec
tories spiral away from K as t —> — oo and the exterior trajectories spiral 
toward K as t —► +oo) the limiting cycle K is called semistable 
[Fig. 48(c)]. 

Proof. To the proof of Theorem 20 we preface a proposition. 
(A) Let x = ip(t, ξ) be a solution of equation (2) (n = 2) with initial 

values 0, ξ, and let L be a curve defined in the plane P by an equation in 
vector parametric form 

x = φ(η), (3) 
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(b) (c) 

FIGURE 48 

where the vector function yj/(u) of the parameter u has a continuous deriva
tive which is not zero. If the trajectory x = <p(tj £0) and the curve L 
intersect at the point 

v(to, f o) = Ψ(νο) = b (4) 

but are not tangent there, i.e., the vectors f(b) and \l/f(u0) are linearly 
independent, then for sufficiently small \ξ — ξ0\, the trajectory φ(ί, ξ) 
and the curve L intersect at the point 

*(*(*), €) = ^(w(Ö), 

where the values i(£) — t0 and u(£) — u0 are small and the functions 
ί(ξ) and η(ξ) have continuous derivatives with respect to the components 
of the vector ξ. From this it follows, in particular, that every trajectory 
passing sufficiently close to b intersects the line L. 
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For the proof let us consider the vector equation 

φ(1, ξ) - *(u) = 0 (5) 

determining the desired point of intersection, in which the variables t 
and u are unknown functions of the vector ξ. By hypothesis, equation (5) 
has the solution t = t0, u = u0 at ξ = ξο [see (4)]. In order to prove the 
existence and differentiability of the solution of (5) we write this equation 
in the scalar form 

<p\t, ξ) - tHu) = 0, 

<P2{t, | ) - *\u) = 0. 

For t '= t0, u = u0j ξ = ξο, the functional determinant of this system 
is obviously 

~dt 
άψ1 

du 

Θφ 

du 

f\h) 

^'(uo) 

f(b) 

i2'(u0) 

which does not vanish since by hypothesis the vectors f (b) and Y'(UQ) are 
linearly independent. Hence, by the well-known implicit function theorem, 
and also by Theorem 18 on the differentiability with respect to the initial 
values, the validity of proposition (A) follows. 

The proof of Theorem 20 is based on a consideration of the succession 
function of equation (2) in the neighborhood of the closed trajectory K. 
In the construction of this function we shall use only the fact that K is 
a closed trajectory, and not the fact that it is a limit cycle. The period of 
the trajectory K will be denoted by T. Let L be a curve which is defined 
on the plane P by equation (3) and which intersects K at a unique point 
b = Y(UQ) and is not tangent to it at this point. For example, we can 
assume that L is a straight-line segment with the interior point b. Let p 
be a variable point of the curve L. Since for p = b the trajectory <p(t, p) 
intersects L at the point b for t = T, it follows from proposition (A) that, 
for p close to b, the trajectory <p(t, p) intersects L at the point q for t close 
to T and that the point q is the successor of the point p (Fig. 49). This 
means that on the segment pq of the trajectory <p(t, p) there are no points 
of intersection with the curve L which are distinct from p and q (see 
Theorem 18). If 

p = t{u), q = ^(y), 

then by proposition (A) the quantity v is a function of u, that is, v = X(u), 
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FIGURE 49 

where x'{u) is continuous. The function x(u) is called the succession 
function. It is obvious that 

X(u0) = u0. (6) 

Furthermore, since the trajectory <p(t, p) cannot intersect K for p ^ b, 
the points p and q lie on the same side of K, so that the numbers 

u — u0, X(u) — u0 (7) 

have the same sign. 
We shall now show that the coordinate u of the point p is a single-valued 

differentiable function of the coordinate v of the point q, i.e., that the rela
tion v = x(u) has an inverse u = X~~x(v). To do this we may consider, 
instead of equation (2), the equation 

i = - f (x ) , (8) 

which differs from (2) only by the sign of the right-hand side. By equation 
(8), the point p is the successor of the point q, so that, by what we have 
already proved, u — x~l(v), where X~l(v) is the succession function for (8) 
in the neighborhood of its periodic trajectory K. 

Because the quantities (7) have the same sign, the derivative of the 
function x(u) at the point u0 is nonnegative [see (6)], and since x(u) has 
a differentiable inverse, the equality x'(u0) = 0 cannot occur. Thus the 
inequality X'(M0) > 0 holds, and therefore 

x'{u) > 0 

for all values of u sufficiently close to UQ. Hence it follows that the suc
cession function is monotone increasing. 
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It is obvious that to every solution of the equation 

x{u) = u (9) 

corresponds a periodic solution <p[t, ψ(η)] of equation (2), and since if is a 
limit cycle, there exists a positive number e such that on the interval 
\u — UQ\ < e, equation (9) has only one solution u = u0 [see (6)]. We 
shall restrict our consideration of the function x(u) to that interval. 

The points \(/{u) for u < u0 and u > u0 lie on opposite sides of the curve 
K. To be specific, we shall assume that for u > u0 they lie outside the 
curve K, and we shall study the behavior of exterior trajectories by means 
of the properties of the function x(u) in the interval u0 < u < u0 + €. 
Since equation (9) has no solutions on this interval, one of the inequalities 

x(u) < u, (10) 

x(u) > u (11) 

must hold on this entire interval. The first of these inequalities means that 
outside K the point q is closer to b than p on the curve L (Fig. 49), and the 
second inequality means the opposite. Inequality (11) is obviously equiva
lent to the inequality 

X~\v) < v. (12) 

We shall analyze the case of inequality (10). Let U\ be an arbitrary point 
of the interval u0 < u < u0 + €, and let us set 

W+i = x(m), i= 1,2, (13) 

By (10) the sequence 
Ui, U2, . . . , Ui, . . . 

is monotone decreasing, each of its terms being larger than u0. Let u* 
be the limit of this sequence; we shall show that u* = u0. Passing to the 
limit in equation (13) as i —> oo, we obtain x(u*) = u*, and since u = u0 
is a unique solution of equation (9), then u* = u0. The points ^(wi), 
ψ(ν>2), . . . , Ψ(ν>ι), . . . are successive points of intersection of the trajectory 
<p[t> Ψ(ν>ι)] with the line L, and because they converge to the point b for 
sufficiently small e, this trajectory spirals toward K as t —> oo (see 
Theorem 18). This is true for the trajectory which starts at any point 
ψ(ν>ι), UQ < u\ < u0 + e; thus, spiral trajectories of this form fill the 
entire exterior half-neighborhood of K. 

If (12) is satisfied for the succession function of equation (8), then by 
applying to equation (8) the assertion just proved, we conclude that the 
exterior half-neighborhood of the trajectory K is filled with spiral trajec-
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tories of equation (8) which spiral toward it as t —> + oo. Since the tra
jectories of equations (2) and (8) coincide geometrically and proceed only 
in opposite directions, then from what was proved for equation (8) we may 
conclude in the case of equation (2) that whenever (11) is satisfied, the 
exterior half-neighborhood of K is filled with trajectories which spiral 
toward K as t —-> — oo. The behavior of interior trajectories may be 
studied in exactly the same manner. Thus Theorem 20 is proved. 

Note. In order to combine in one formulation the relation between the 
behavior of the function X(u) in the neighborhood of u0 and the behavior 
both of exterior and interior trajectories, we shall consider the inequalities 

\X(u) — U0\ < \U — U0\, 
(14) 

\x{u) — u0\ > \u — u0\. 

If the first of these inequalities holds in a half-neighborhood of the curve K 
(exterior or interior), then the point q lies closer to b than to p on the line 
L, so that the trajectories spiral toward K in this half-neighborhood as 
t —» +oo. However, if in this half-neighborhood the second of inequalities 
(14) holds, then the trajectories spiral toward K in this half-neighborhood 
as t —> — oo. 

The geometrical study of the succession function X(u) has a certain at
tractiveness. We shall represent it in the form of a graph of the equation 

v = X(u) (15) 

in the tw-plane, assuming here for convenience that u0 > 0. In order to 
obtain a solution of equation (9), we shall consider, along with the curve 
(15), the bisector of the first quadrant 

v = u (16) 

(Fig. 50). To find all solutions of equation (9) it is necessary to find all the 
points of intersection of the curves (15) and (16). In order that the closed 
curve K be a limit cycle, it is necessary and sufficient that the point (^ο, ^ο) 
be an isolated point of intersection of the curves (15) and (16). If these 
curves are not tangent at the point (u0, w0), that is, if x'(^o) ^ 1, then 
their point of intersection (^ο, ^ο) is necessarily isolated. In this case K 
is called a "rough" limit cycle. Whenever x'(u0) < 1 (Fig. 50) in both 
half-neighborhoods, the first of inequalities (14) is obviously fulfilled, so 
that the limit cycle K is stable. Whenever x'(u0) > 1 (Fig. 51), the second 
of the inequalities (14) is fulfilled so that the limit cycle K is completely 
unstable. 

If the curves (15) and (16) are tangent at the point (u0, u0) but the 
curve (15) passes from one side of the bisector (16) to the other, then the 
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FIGURE 51 

limit cycle K is either stable or completely unstable. However, if (15) is 
tangent to the bisector (16) and lies on one side of it (Fig. 52), then the 
corresponding limit cycle is semistable. 

Criterion for the existence of a limit cycle.. 
(B) Let <p(t) be a certain solution of equation (2) (n is arbitrary) defined 

for all values t > t0 and remaining in a closed bounded set F of the domain 
Δ for these values of t. The point p of the space R is called an ω-limit point 
of the solution <p(t) if there exists an unbounded increasing sequence of 
values (larger than t0) 

such that 

hf t2, . . . , tk, · . · , lim tk = oo, 
k—»oo 

lim 4>(tk) = p. 
k—»oo 

The set Ω of all co-limit points of the solution φ(ί) is called the ω-limit set. 
Thus the set Ω is nonempty, closed, and bounded. The set Ω also consists 
of entire trajectories; that is, if the point ξ belongs to Ω, then the solution 
<p(t, i) with initial values (0, ξ) is defined for all values of t, and the entire 
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trajectory 4p(t, ξ) is contained in the set Ω. It is obvious that the ω-limit 
set of the trajectory <p(t, ξ) is entirely contained in Ω. 

We shall prove proposition (B). From the fact that the set F is closed 
and bounded it follows that the set Ω (which is obviously contained in F) 
is nonempty and bounded. We shall show that the set Ω is closed. Let 

Pi, P2, · · - , P*, . . . 

be a certain sequence of points of the set Ω which converges to some point 
p of the set F; we shall prove that p belongs to Ω. Let €χ, €2, . . . , € * , . . . 
and Si, s2, . . . , Sfc, . . . be two sequences of positive numbers such that 

lim €k = 0; lim Sk = oo. 
k—»oo k—»oo 

Since the point p& belongs to Ω, there exists a value tk > Sk such that the 
distance between p^ and <p(tk) is smaller than €&. For these values 

we obtain 

h, t2, . . · , tk, · · · , lim tk = GO 
fc—»oo 

lim <p(tk) = p, 
k—»oo 

which means that p is in Ω. 
We shall now show that the set Ω consists of complete trajectories. Let 

ξ be an arbitrary point of the set Ω and <p{t, f) a solution with initial values 
(0, f). Moreover, let T be a value of t (which can be negative) for which the 
solution <p(t, f) is denned, so that the point φ(Τ, ξ) exists. Since the point ξ 
belongs to Ω, there exists an unbounded increasing sequence 

such that 

h, t2, . . . , tk, . . . , lim tk = oo, 
k—»oo 

lim *(fc) = t (17) 
k—»oo 

Since the solution <p(t) is defined for all sufficiently large values of t} then 
for a given T (starting from some k) the points 

<p{tk + T) = φ{Τ, P(tk)) 

are defined [see §26, (C)]. From (17) and Theorem 18 we have 

lim <p(tk + T) = lim φ(Τ, <p(tk)) = φ(Τ, {), 
k—»oo fc—»oo 

from which it follows that the point <p(t, ξ) belongs to the set Ω and con-



28] LIMIT CYCLES 229 

FIGURE 53 

sequently to the set F. Thus the trajectory <p(t, ξ) cannot leave the set F 
either for increasing t or for decreasing t, and therefore by proposition (B) 
of §24 it is defined for all values of t. Thus proposition (B) is proved. 

Let us consider some special cases of the ω-limit set. If the solution 
<p(t) [see (B)] is an equilibrium state, i.e., if <p(t) = x0, then the ω-limit set 
of the solution <p(t) obviously consists of one point x0. If <p{t) is a periodic 
solution describing a closed trajectory K, then the co-limit set of <p(t) 
clearly coincides with K. Finally, if if is a periodic solution and <p(t) is a 
trajectory which spirals toward this solution as t —> +oo, then K is the 
co-limit set of <p(t). 

We shall now prove a theorem which makes it possible to establish the 
existence of a periodic solution in certain cases. Whenever the right-hand 
sides of (1) are analytic, this periodic solution will be either a limit cycle or 
will be contained inside the family of periodic trajectories (see Example 3). 

THEOREM 21. Let φ(ΐ) be a solution of equation (2) (n = 2) defined for 
all values t > t0 and remaining for these values of t in a closed, bounded 
set F which is contained in Δ, and let Ω be the co-limit set of the solution 
<p(t). If the set Ω does not contain any equilibrium states, then it consists 
of one closed trajectory K. Here two cases are possible: (1) <p(t) is a 
periodic solution and K the trajectory described by it, and (2) the 
trajectory described by the solution <p(t) as t —* +oo spirals toward the 
trajectory K. 

Proof. If <p(t) is a periodic solution, then the set Ω consists of a unique 
periodic trajectory K described by the solution <p(t), and the conclusion 
of the theorem is obvious [case (1)]. Let us assume that <p(t) is not periodic 
and let b be an arbitrary point of the set Ω. We shall draw a straight-line 
segment L through the point b so that it is not collinear with the phase 
velocity vector f(b) which starts from the point b [the vector f(b) can 
not equal zero since the point b of the set Ω is by hypothesis not a state of 
equilibrium]. We choose a segment so short that all trajectories passing 
through a point of this segment will intersect it (without being tangent) 
in the same direction as the trajectory passing through b (Fig. 53). Since 
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FIGURE 54 

b is the ω-limit point for the trajectory φ{{) and the latter is not closed, 
this trajectory obviously must intersect the segment L an infinite number 
of times and at distinct points [see (A)]. Let ax = <p(ti) and a2 = <p{t2) 
be two points of intersection of the trajectory <p(t) with the segment L 
following each other in time {t\ < t2). That segment of the trajectory 
<p(t) with ti < t < t2 will be denoted by M. Together with the segment 
aia2 it forms a closed curve Q, which divides the plane into two domains 
(?i and G2. Let A be a small positive number. Geometrically it is obvious 
(Fig. 54) that the points φ(ί\ — h) and <p(t2 + h) lie on different sides 
of the curve Q; we shall assume that the first belongs to the domain G\ 
and the second to the domain G2. AH trajectories going from the domain 
G\ into the domain G2 pass through the segment aia2. Thus, no trajectory 
can leave the domain G2 through this segment, nor can any trajectory 
enter or leave the domain G2 through the curve M, because M is a piece 
of a trajectory and trajectories cannot intersect. Since a portion M of 
the trajectory φ(ί) intersects L only at its endpoints, these endpoints of 
L lie on opposite sides of the curve Q. We denote by a that endpoint of 
L which is located in the domain G2. The whole trajectory «*(0> starting 
from t > t2 + h, runs in the domain G2 and cannot intersect the segment 
axa2; therefore the point b does not belong to the segment axa2 [see (A)] 
so that it must lie on aia2. Now if a3 = <p{h) is that point of intersection 
of the trajectory with segment L following a2 (with respect to time), then 
it is evident from analogous considerations that it lies on the segment 
(Fig. 54). Denoting by 

a4 = <p{t±), . . . , afc = ^(ifc),. . . 

the points of intersection following each other (in time) of the trajectory 
φ(ή with L, we can verify that they form on the segment L a monotonic 
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sequence of points directed from ax to b. We shall show that the limit b ' 
of the sequence ax, a2, . . . , a^, . . . coincides with b. 

In order to show this we shall first prove that the sequence t\, t2,. . . , 
tk, . . . increases without bound. Let us assume that lim^oo tk = τ < +cc. 
Then φ(τ) = b ' and f(b') = «/(r) = l i m ^ (φ(τ) - p(fk))/(T - tk), 
which is impossible since the vector φ{τ) — <p{tk) is directed along the 
segment L, and the vector f (b') is not collinear with this segment. Thus 
the relation lim*-^* = +00 must be fulfilled, so that the whole trajectory 
<p(t) intersects L only at the points ai, a2, . . . , a ,̂ . . . for t > t\. Con
sequently, this trajectory has only one co-limit point b ' on the segment L 
[see (A)], so that b ' = b. We remark that only the fact that the point b 
itself is not an equilibrium state has been used in the proof. 

We shall now show that the trajectory <p(t) cannot enter the ω-limit set 
for any other trajectory ψ({). Let us assume the opposite. Then every 
point of the trajectory <p(t) is an co-limit point for ψ(ί) [see (B)]; in particular, 
the point ai will be such a point. Since the point ai is not an equilibrium 
state, then, by what has been proved above, the successive points of inter
section 

bi , b 2 , . . . , b f c , . . . 

of the trajectory ψ({) with L form a monotonic sequence which converges 
to ai , and other ω-limit points of trajectory \f/(t) on segment L do not exist. 
But this is contradicted by the fact that all points a2, a3, . . . located on 
the trajectory <p(t) are co-limit points of the trajectory ψ{(). 

Thus we have proved that an open trajectory, among whose ω-limit points 
there are no states of equilibrium, cannot itself be an ω-limit trajectory. 

Since the trajectory K is contained in the co-limit set Ω of the trajectory 
φ(ί) and this set is closed [see (B)], all co-limit points of K are contained in 
Ω and therefore are not states of equilibrium. Thus the proposition proved 
above can be applied to the trajectory Ky so that K must be closed. From 
the entire construction it is evident that the trajectory <p{t) spirals toward 
K, and therefore the set Ω consists only of the closed trajectory K which 
passes through the point b. 

Thus Theorem 21 is proved. 

EXAMPLES 

1. We shall give an example of a system of equations of the form (1) 
(n = 2) which has periodic solutions of a different type, in particular, 
limit cycles of different forms. Initially we shall define it in polar co
ordinates φ and p, and then we shall transform it into rectangular co
ordinates x and y. Remembering the subsequent transformation into 
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rectangular coordinates, we shall define it in the form 

* = 1 ; P = pg(p2), (18) 

where g{u) is a continuously differentiable function defined for all its non-
negative values. In considering it in polar coordinates we shall use only 
positive values for p. 

The set of all positive values of p for which g(p2) = 0 will be denoted 
by N, and its complement in the set of positive numbers by D. To every 
number u0 from N corresponds, obviously, the solution 

φ = t, p = U0 

of equation (18). The corresponding trajectory KUQ is closed; it is a circle 
in the plane P with center at the origin and with radius u0. Since N is 
closed in the set of all positive numbers, D is open and consists of a finite 
or countable number of intervals which do not intersect each other in pairs. 
Let U\ < p < u2 be one of the finite intervals. Then the closed trajec
tories KUl and KU2 bound an annulus Q in the plane P. For all numbers 
p of the interval U\ < p < u2 the function g(p2) does not change sign, so 
that on the entire interval one of the inequalities 

9(P2) < 0, g(p2) > 0 (19) 

holds. Let 
φ = t, p = p(t, U) (20) 

be a solution of (18) with initial values t = 0, φ = 0, and p = u, where 
u\ < u < u2. By what we proved in Example 1 of §15, the function 
p(t, u) is defined for all values of t; as t —> oo it approaches one end of 
the interval U\ < p < u2, and as t —> — oo it approaches the other end. 
Hence it follows that the trajectory (20) spirals toward the circumferences 
KUl as t —> oo and KU2 as t —> — oo. That is, if the first of the inequalities 
(19) holds, then the trajectory (20) is a spiral which winds toward KUl as 
t —> oo and away from KU2 as t —> — oo (Fig. 55). If the second of the in
equalities (19) holds, then the solution (20) is a spiral which winds away 
from KUl as t —» — oo and toward KU2 as t —> +oo (Fig. 56). Thus the 
annulus Q is filled by the same type of spirals of one of two forms depend
ing on which of the inequalities (19) is fulfilled on the interval U\ < p < u2. 
If the set N is bounded and it* is its least upper bound, then on the infinite 
interval u* < p < +&>, the trajectory (20) spirals in one direction on 
Ku*y and, in the other direction, it recedes to infinity. 

If the point u0 of the set N is an isolated point, then the closed trajectory 
KUo is a limit cycle, whose form depends on the type of spiral filling the 
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annuli adjacent to the trajectory KUo. If the point u0 of the set N is not 
an isolated point, then the periodic solution KUo is not a limit cycle. If, 
in addition, the entire interval with center u0 is contained in N, then the 
periodic solution KUo is contained in a whole family of periodic solutions 
forming a set of concentric circles with a common center at the origin. 
If the number u0 forms the endpoint of an entire segment of numbers of 
the set N and is, at the same time, the endpoint of an interval of D from 
the other side, then the trajectory KUQ is extremal in the family of closed 
trajectories which are contiguous to KUo from one side, while from the other 
side the family of trajectories spirals toward KUQ. I t is possible, however, 
for the contiguity of closed trajectories to a periodic solution KUQ to be 
much more complex. Such cases can be easily imagined; for example, N 
can be the perfect set of Cantor. 

We shall now write system (18) in rectangular coordinates by setting 

x = p cos φ} y = P sin φ. (21) 

By differentiating (21), we obtain 

x = p cos φ — ρφ sin ψ = pg(p2) · ^ — p · ^ = xg(x2 + y2) — y; 
(22) 

y = p sin φ + ρφ cos φ = pg(p2) · ^ + p · ^ = yg(x2 + y2) + x. 

Thus, system (18) may be written in the form of rectangular coordinates: 

x = xg(x2 + y2) - y; y = yg(x2 + y2) + x. (23) 

(Here g can be, for example, an arbitrary polynomial.) System (23) has 
a state of equilibrium at the origin. 
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2. Let 

be a normal autonomous second-order system whose right-hand sides de
pend on the numerical parameter μ and have continuous first-order partial 
derivatives with respect to xu x2j μ. In addition, let 

± = ί(Σ,μ) (24) 

be the vector form of this system. The solution of equation (24) with 
initial values 0, ξ will be denoted by <p{t, ξ, μ); let us assume that 
<p(t, £o, Mo) is a periodic solution of equation (24) at μ = μ0 with period T. 
We shall answer the question of what happens to this solution when the 
parameter μ varies in the neighborhood of μ0. 

We shall represent the solutions of equation (24) in the same plane P 
independently of the value of the parameter μ. Let K be a closed trajectory 
corresponding to the solution <p(t, ξ0, μ0) and L a smooth curve defined in 
the plane P by means of the parametric vector equation 

x = ψ(η), 

which intersects the trajectory K at the unique point 

Co = *(0, Co, Mo) = <P(T, Co, Mo) = *(tto) (25) 

and is not tangent to it. We consider the vector equation 

φ(ΐ,ψ(η),μ) - ψ(ν) = 0, (26) 

in which μ and u are taken as independent variables and t and v as unknown 
functions. Let u vary in the neighborhood of u0 and μ in the neighborhood 
of μο· We shall seek solutions for t close to T and for v close to u0. For 
u = UQ and μ = μ0 there is the trivial solution of equation (26), t = T, 
v = UQ [see (25)], and the functional determinant corresponding to the 
system of equations for these values of the variables is distinct from zero, 
since the vectors f (£0, Mo) and ψ'(η0) are independent. For μ = μ0 equation 
(26) defines the succession function v = x(u, μ0) of equation (24) with 
μ = μ0 in the neighborhood of the closed trajectory K. For μ close to 
μ0, the function v = x(u, μ) is also defined from equation (26) and can be 
considered the succession function of equation (24) in the neighborhood of 
the periodic solution K. However, equation (24) need not have a periodic 
solution for μ τ^ μο· To find the periodic solution of equation (24) for μ 
close to μο, we consider the equation 

X(u, μ) — u = 0 (27) 
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in the unknown function υ,(μ) of μ. If the derivative of the left-hand side 
of (27) with respect to u is distinct from zero at u = u0, μ = μ0, that is, if 

^ Xfao, Mo) * 1, (28) 

then (27) automatically has the differentiable solution u(p), so that for 
μ close to μο equation (24) has a unique periodic solution, which is 
"smoothly" dependent on μ and which reduces to K for μ = μ0. Condi
tion (28) expresses the degree of "roughness" of the cycle K, and the result 
obtained justifies our use of the word "rough," or "coarse." A "rough" limit 
cycle does not "disappear" (and remains rough) for small variations of the 
right-hand sides of the system; it is stable under these variations. 

If the curve given by the equation 

v = X(u, μ) (29) 

in the uv-plsme is tangent for μ = μ0 to the bisector 

v = u (30) 

at the point (u0, u0) with the order of contact equal to unity [Fig. 57(b)], 
then for μ = μ0 the curve (29) lies on one side of the bisector (30), and the 
limit cycle K is semistable [Fig. 58(b)]. As the parameter μ varies in the 
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neighborhood of μ0, the most natural behavior of the graph of (29) is for 
the point of intersection of (29) and (30) to disappear altogether [Fig. 57(a)] 
for values of μ on one side of /z0> and for two points of intersection of these 
curves [Fig. 57(b)] to appear for values of μ on the other side, so that (24) 
has two rough limit cycles close to K [Fig. 58(c)]. Thus, when μ passes 
through μ0, we do not have a limiting cycle at first [Fig. 58(a)]; further, at 
μ = μ0, one semistable cycle appears which, for subsequent variation of 
μ, decomposes into two coarse limit cycles which are close to K. The 
phenomenon described is called the "generation" of limit cycles of equa
tion (24) by variation of the right-hand side. 

3. We point out some important properties of a periodic solution K of 
(2) whenever the right-hand sides are analytic. Here we shall use without 
proof the fact that the solution <p(t, ξ) of equation (2) in this case is an 
analytic function of t, ξ1, ξ2. In the construction of the succession function 
we shall assume that the curve L is defined by an analytic equation. Under 
these assumptions the succession function x(u) will be analytic, since it is 
the solution of an analytic equation. 

Since a periodic solution of equation (2) corresponds to the zeros of the 
function X(u) — u, then, in view of the analyticity of x(u), only two mu
tually exclusive cases are possible: (1) the periodic solution if is a limit 
cycle in the case when u0 is an isolated zero of x(u) — u; (2) the periodic 
solution K is contained in the family of periodic solutions in the case when 
x(u) — u is identically zero. If any other trajectory spirals toward K, 
then K is not contained in the family of periodic solutions and consequently 
it is a limit cycle. Thus, when the right-hand sides are analytic in the 
second case, the periodic solution K of Theorem 2 is a limit cycle. 

29. The vacuum-tube oscillator. Here we shall describe systematically 
the design of the simplest vacuum-tube oscillator, a device which is a source 
of periodic (undamped) electrical oscillations. A qualitative mathematical 
theory of the operation of the generator will be given. The equation describ
ing the operation of a vacuum-tube oscillator is nonlinear, and its limit 
cycle corresponds to the periodic oscillations generated by the oscillator. 
One of the first studies of the adequacy of the mathematical concept of a 
limit cycle and of the physical concept of an undamped oscillation gen
erated by a vacuum-tube oscillator was that of the outstanding Soviet 
scientist A. A. Andronov. Before Andronov's studies, attempts were 
made to explain the operation of a vacuum-tube oscillator by means of 
linear differential equations; such attempts could not give the correct 
mathematical picture of the generator's performance. 

(A) A triode (one form of electron tube) is represented by a three-
terminal element aks. The conventional representation of the triode is 
shown in Fig. 59. Here a is the plate, k is the cathode, and s is the grid. 
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FIGURE 59 

>Us 

FIG. 60. Characteristic of a triode 

FIGURE 61 

Between poles s and k there exists a voltage difference U8 (the grid voltage), 
but there is no current between the poles s and k; from pole a to pole k 
the current Ia (plate current) flows through the tube. The law governing 
the operation of the triode may be expressed by the formula 

la = f(Us). (1) 

The function / is called the characteristic of the triode. We shall assume 
that it is monotone increasing and positive, and satisfies the conditions 

lim f(U8) = 0, lim f(U.) = IN, 
Ue->—oo tfs->+°° 

where IN is the saturation current of the triode (Fig. 60). Usually it is 
also assumed that the maximum of the function f(U8) is attained at the 
point Us = 0. 

The three-terminal element described in (A) under the name triode in 
reality includes besides the electron tube also the plate battery, the battery 
of the grid bias, and the filament battery. 

(B) A vacuum-tube oscillator with an oscillatory loop in the plate circuit 
is diagrammed in Fig. 61. It has four junction points a, k, s, 6, and con
sists of a triode aks [see (A)] with the characteristic f(U8), a capacitor ak 
with capacitance C, resistance ab with value R, inductance bk of magnitude 
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L, and an additional inductance sk of insignificant magnitude. Inductances 
kb and ks are connected by a negative mutual induction M{M > 0), 
which effects the so-called feedback coupling in the oscillator. If we denote 
by J the current which flows through the resistance ba, or, what is the 
same thing, through the inductance kb, so that 

J = Iba = hbj 

hens it turns out that J, as a function of time t, satisfies the following 
differential equation: 

LJ+ Rj + -0 = ±f(MJ). (2) 

Let us derive equation (2). By Kirchhofes first law, we have 

J+ ha= /«, (3) 

where Ika is the current flowing through the capacitor ka. In addition, 
by the properties of the triode we have 

/.* = 0. (4) 

Applying Kirchhofes second law to the oscillatory loop kbak we obtain 
[see (4)] 

LIkb+ Rha + fj j Iakdt= 0. 

Differentiating this relation, we obtain 

LIkh + Rlha + ±Iak = 0. (5) 

By virtue of the mutual induction between inductances kb and ks we obtain 
[see (4) and also §13, (B)] 

U8 = MIkh. (6) 

Thus equation (2) follows from (1), (3), (5), and (6). 
(C) In the phase plane of J and J equation (2) has a unique state of 

equilibrium with coordinates 

/ = /(0), J = 0. (7) 

This state of equilibrium is asymptotically stable if 

R > f f(0), (8) 
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and completely unstable [see §26 (F)] if 

R < f / ' (0). (9) 

The point at infinity in the plane ofJ, J is completely unstable in all cases. 
This means that there exists a circle K in the plane «/, J so large that any 
trajectory of (2) beginning at a certain instant enters into this circle and 
remains in it. When (9) is satisfied, the state of equilibrium (7) is also 
completely unstable. Thus by Theorem 21 (see §28) the ω-limit set of any 
trajectory which is not a state of equilibrium (7) is a closed trajectory. 
Thus, whenever (9) is satisfied, the vacuum-tube oscillator is a source of 
periodic undamped electric oscillations. 

Note: With the appropriate choice of the characteristic / , equation (2) 
has a unique limit cycle, toward which spiral all other trajectories of (2) 
which are not states of equilibrium of (7). One of the characteristics with 
this property will be illustrated by an example. 

For the proof of proposition (C) we shall replace the unknown function 
J by a new unknown x by setting 

J = x+f(0), (10) 

so that the origin in the (x, #)-plane corresponds to the point (7). 
By substituting (10) into (2), we obtain the equation 

* + T± + IÖX = TC[f{m) ~fm (11) 

Let g(x) denote the function of x on the right-hand side of this equation. 
I t is seen immediately that g is bounded and monotone increasing, and 
vanishes only for the value zero of the argument (Fig. 62). If, in addition 
we set 
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we can write (11) in the form 

x + 2 bx + ω2χ = g{x). 

Introducing a new variable y = x, we obtain from this equation a normal 
system 

x = y, 
(12) 

y = —ω2χ — 2 by + g(y). 

To find the state of equilibrium of (12), we equate its right-hand sides to 
zero: 

2 / = 0, 

-ω*χ -2by + g(y) = 0. 

The system obtained has a unique solution 

x = 0, y = 0. 

Thus, the origin is a unique state of equilibrium of (12), and therefore it 
follows that the point (7) is the unique equilibrium state of equation (2). 

We shall now determine the stability conditions of the state of equilib
rium (0, 0) of (12) by linearizing this system at the point (0, 0). We obtain 
the system 

x = y, 
(13) 

y = - ω
2 ζ -2by + g'(0)y. 

A simple calculation gives the characteristic polynomial 

λ2 + (2b - g'(0))\ + co2 

of the linear system (13). In the new notation the conditions (8) and (9) 
take the form 25 > ^(O), 2 b < <7'(0), respectively. Thus, whenever (8) is 
fulfilled, the equilibrium state (0, 0) is asymptotically stable [see Theorem 
19 and §9(B)], and whenever (9) is fulfilled, it is completely unstable [see 
§26(F)]. 

To determine the asymptotic behavior of the trajectories of the system 
(12) in the phase plane of x, y, we consider the linear system 

x = y. 
(14) 

y = -ω
2
χ — 2 by, 

which is obtained from (12) by discarding the term g(y) which is bounded 
in the entire plane. A simple calculation yields the characteristic poly
nomial of system (14), 

λ2 + 2δλ + ω2, (15) 



29] THE VACUUM-TUBE OSCILLATOR 241 

and, since the numbers 25 and ω2 are positive, its roots have negative real 
parts. Thus, by proposition (E) of §26 for the linear system (14), there 
exists a Lyapunov function W(x, y) which satisfies the condition 

tf(U)(*, y) < ~ßW(x, y). (16) 

Let us now calculate the derivative W(\2)(%, y) of the function W(x, y) 
with respect to the system (12): 

Wa2)(x, y) = Wil4)(x, y) + dW^ y) g(y). (17) 

Since the function g(y) is bounded, the inequality 

\dW(x, y) 
fy g(y) < yVW(x, y) (18) 

holds [see formula (14), §26], where 7 is some positive constant. 
If we now set 

27 ß 

we obtain from (16), (17), and (18) the inequality 

l^a2>fo y) < —2aW(x, y), whenever W(xf y) > c2. (19) 

The equation 
W(x, y) = c2 (20) 

defines an ellipse in the xy-pl&ne. It follows directly from inequality (19) 
that at the point (x, y) of the ellipse (20) the function W(x, y) decreases 
along the trajectory of system (12) which passes through the point (x, y). 
Thus whenever the trajectories of system (12) intersect the ellipse (20), 
they must enter it. If 

x = v(t), y = m (21) 

is a solution of system (12) which starts at a point (£, η) outside the 
ellipse (20), then, by setting 

w(t) = TF(*0),iKO), 

we obtain for the function w(t) the inequality 

w(t) < —2aw(t), (22) 
which is valid whenever 

u>(0 > c2. 
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If we integrate (22), we obtain 

From this it follows that the trajectory (21) must enter the ellipse (20). 
No trajectory leaves this ellipse, since at its boundary points trajectories 
can only enter. 

Let K be some circle in the xy-p\ane containing the ellipse (20). I t 
follows from what has been proved that any trajectory of (12) which is 
distinct from the state of equilibrium (0, 0) necessarily enters the circle 
K and remains inside. Since the point (0, 0) is completely unstable, it 
cannot be among the ω-limit points of this trajectory, so that by Theorem 
21 (see §28) it either spirals toward a periodic solution or is a periodic solu
tion. Thus proposition (C) is proved. 

EXAMPLE 

A. A. Andronov, who first derived the nonlinear equation (2) for the 
oscillator, considered the case when the characteristic / of the triode was 
of a particularly simple form, that is, equal to zero for negative values of 
the argument and equal to a positive constant 6 for positive values of the 
argument. Assuming that /(0) = 6/2 and making the change of variables 
(10), we arrive at the system (12) in which the function g(y) is defined by 

ί -ω 2 α , y < 0, 
g(y) = 2 (23) 

1 ω2α, y > 0, 

where a = 6/2. The system (12) with the discontinuous function g(y) 
may be written for the upper half-plane (y > 0) in the form 

x = y. 
(24) 

y = —ω2χ — 2 by + ω2α, 

and for the lower half-plane (y < 0) it may be written in the form 

x = y, 
(25) 

y = —ω2χ — 2 by — ω2α. 

We shall assume that the roots of the polynomial (15) are complex. Thus 
the state of equilibrium (0, 0) of (14) is a stable focus [see §16, (C)]. 
However, the systems (24) and (25) differ from system (14) only by a 
translation; their states of equilibrium are located not at the origin as in 
the system (14), but at the point (a, 0) of the system (24) and at the 
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point (—a, 0) of the system (25). We remark that the spirals of the linear 
system (14) wind around the state of equilibrium (0, 0) in a clockwise direc
tion, and we note further that in the circuit of a half-turn of the spiral the 
phase point approaches the origin, so that its original distance from the 
origin is multiplied by a certain number λ < 1 which does not depend on 
the initial position of the point [see §16, (C)]. 

In order to visualize the phase plane of system (12) in the case when the 
function g(y) is defined by (23), it is necessary to fill the upper half-plane 
with half-turns of spiral trajectories of system (24) and the lower half-plane 
with half-turns of spiral trajectories of system (25). However, in crossing 
the line y = 0, it is necessary to pass continuously from certain trajec
tories to others. On the basis of this description of the phase picture of 
system (12) [see (23)], we shall look for its closed trajectories. 

Let us consider the trajectory of system (12) [see (23)] which starts on 
the axis of abscissas at the point £ > 0. Since the motion in the phase 
plane of (12) is clockwise, the trajectory will go from the point chosen into 
the lower half-plane and consequently will be governed by system (25). 
After one half-turn of the spiral in the lower half-plane, the phase point 
again crosses the axis of abscissas at a point with the coordinate 

-(α + λ(α+ Ö). (26) 

This follows from the fact that after one half-turn of the spiral, the distance 
of the phase point from the state of equilibrium (—a, 0) is multiplied by λ. 
The point with coordinate (26) lying on the axis of abscissas will then 
move by virtue of system (24) and, after one half-turn of the spiral in the 
upper half-plane, it will arrive at the axis of abscissas at a point with the 
coordinate 

a + λ(2α + λ(α + {)). (27) 

Thus a trajectory starting at a point with coordinate £ > 0 on the positive 
part of the axis of abscissas will, after a complete turn, again contact the 
positive part of the axis of abscissas, but this time at the point with co
ordinate (27), and we obtain a mapping X of the positive semiaxis of ab
scissas into itself, defined by the relation 

χ(ξ) = a + 2\a + \2a + λ2£. 

The function x(£) is the succession function for the system (12) [see (23)]. 
There is only one value of ξ which satisfies the condition 

X(f) = *, 

and to this value of ξ corresponds the limit cycle of system (12), which is 
both rough and stable, since x'(£) = λ2 < 1 (see §28). 
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30. The states of equilibrium of a second-order autonomous system. 
In this section we shall classify and study nondegenerate states of equilib
rium of the normal autonomous second-order system 

* = /(*, 2/), 
• , ϊ ( 1 ) 

y = g(x, y), 
where it will be assumed that the right-hand sides are twice continuously 
differentiable, and, for the purposes of Theorem 23, that they are three 
times continuously differentiable. 

Nondegenerate states of equilibrium. Since the state of equilibrium can 
always be taken as the origin, we shall assume in what follows that the 
state of equilibrium of system (1) is the origin. Linearizing system (1) 
at the point (0, 0), that is, expanding the right-hand sides of system (1) 
into Taylor series in x and y and discarding second-order terms, we obtain 
the linear system 

x = αλχ + a2y, 
2 , 2 W 

Let λ and μ be eigenvalues of the matrix (a}). The state of equilibrium (0, 0) 
of system (1) is called nondegenerate if the numbers λ and μ are not equal 
and if their real parts are not zero. The behavior of trajectories of the linear 
system (2) was studied in detail in §16. Here it will be shown that for 
the nondegenerate state of equilibrium the behavior of trajectories in the 
neighborhood of the state of equilibrium (0, 0) of system (1) essentially 
coincides with the behavior of trajectories in the neighborhood of the 
state of equilibrium (0, 0) of system (2). 

We shall retain the notation of §16 for the state of equilibrium (0, 0) 
of (1). If the numbers λ and μ are both real and negative, then the state of 
equilibrium is called a stable node. If the numbers λ and μ are both real 
and positive, then the state of equilibrium is called an unstable node. If 
λ and μ are complex conjugate and have negative real parts, then the state 
of equilibrium is called a stable focus. If λ and μ are complex conjugate 
and have positive real parts, then the state of equilibrium is called an 
unstable focus. Finally, if λ and μ are real and are of opposite sign, then 
the state of equilibrium is called a saddle. 

The simplest properties of "the behavior of trajectories in the neighbor
hood of the state of equilibrium can be established directly on the basis of 
the Lyapunov theorem (Theorem 19) and proposition (F) of §26. Thus 
we obtain the following proposition. 

(A) A stable node and a stable focus are asymptotically stable states of 
equilibrium. An unstable node and an unstable focus are completely 
unstable states of equilibrium. 
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This proposition already solves to a considerable degree the problem of 
the behavior of trajectories in the neighborhood of a node or of a focus. 
Actually, if it is known that a given state of equilibrium is asymptotically 
stable, then from the point of view of applications it often does not mat
ter how the trajectories approach it. The same also applies to the com
pletely unstable state of equilibrium. An entirely different role is played 
by the saddle: if we know the behavior of trajectories in its neighborhood, 
we can describe the behavior of the trajectories in the entire plane. At the 
same time, the theorem on the behavior of a trajectory in the neighborhood 
of a saddle is considerably more difficult to describe than the corresponding 
theorems concerning the node and the focus. 

Let us perform a linear transformation of the coordinates in the phase 
plane of system (1) in order to give (1) its simplest form. 

(B) Expanding the right-hand sides of (1) in Taylor series in x and y 
up to second-order terms, we obtain 

x = a\x + a\y + r(x, y), 

y = a\x + a\y + s(x, y)f 

where the remainders r(x,y) and s(x, y) vanish together 
derivatives with respect to x and y at the point x = 0, y 
written in the form 

r(x, y) = rlxx2 + 2r12xy + r22y2, 

e(x, y) = sux2 + 2si2xy + s22y2, 

where the coefficients r»y and sa of these "quadratic forms" are functions of 
x and y which are bounded in the neighborhood of the origin. I t is found 
that by performing a real linear transformation of x and y into £, η, the 
system (3) can be reduced to a simple form in which two cases are to be 
distinguished: (1) If the eigenvalues λ and μ of the matrix (aj) are real 
and distinct, then the system of equations for f and η may be written in 
the form 

€ = Π + Ρ(ϊ,ν), 4 = M * + *({,*) . (5) 

(2) If the eigenvalues of (a}) are complex conjugate, i.e., if they have the 
form μ + iv and μ — iv, then the system of equations for £ and η may be 
written in the form 

| = μξ — νη + ρ(ξ, τ/), ή = Ρξ + μη + σ(ξ, η). (6) 

In both cases the remainders p(£, η) and σ(£, η) have the same properties 
which were mentioned above for the functions r(x, y) and s(x, y). In the 
first case the system takes the form (5) if the directions of the eigenvectors 
of the matrix (a)) are taken as axes. 

with their first 
= 0 and can be 

(4) 
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To prove proposition (B) it is sufficient to find a linear transformation of 
the coordinates x and y into the coordinates ξ and η such that (2) assumes 
a simple form. Such a transformation has already been found [see §14, (F)]. 
By applying the same transformation to system (3), we obtain system 
(5) or system (6). 

Behavior of trajectories in the neighborhood of a saddle. 

THEOREM 22. Let us assume that the state of equilibrium 0 = (0, 0) 
of system (1) is a saddle. Let P be a straight line passing through the 
point 0 in the direction of an eigenvector of the matrix (a*·) with a 
negative eigenvalue, and let Q be a straight line passing through the 
point 0 in the direction of an eigenvector of the matrix (a}) with a positive 
eigenvalue. Then (Fig. 63) there exist exactly two trajectories Ui and 
U2 of system (1) which tend asymptotically to the point 0 as t —> +oo. 
These trajectories, together with the point 0, form a continuous differ-
entiable curve U which is tangent to the straight line P at the point 0. 
In the same way there exist exactly two trajectories V\ and V2 of 
system (1) which tend asymptotically to the point 0 as ί —► — oo; 
these trajectories, together with the point 0, form a continuous differ
en t ia te curve V which is tangent to the straight line Q at the point 0. 
The remaining trajectories of system (1) passing through the neighbor
hood of the point 0 behave, in general, in the same way as in the case 
of a linear equation (see §16). 

The trajectories U\ and 172 are called stable branches of the saddle 0, 
and the trajectories V\ and V2 are called unstable branches of the saddle 0. 

Proof. First of all we shall take the line P as the axis of abscissas and 
the line Q as the axis of ordinates; then system (1) may be written in the 
form (5). Adopting again the notation x and y in place of £ and 77, we ob
tain the system of equations 

* = /(*, V) = λχ + r(x, y), 
(7) 

y = g(x, y) = μν + «fa 2/), 
where r{x, y) and s(x, y) have the form (4); here λ < 0, μ > 0. We shall 
note for what follows that in the proof below we shall use only the follow
ing properties of the right-hand sides of (7): they are continuously differ
en t ia te with respect to x and y and their functions /·# and Sij [see (4)] are 
bounded in the neighborhood of the origin. 

The proof will be divided into two principal parts: (a) the proof of the 
existence of the branch U\ which approaches the point 0 along the positive 
part of the axis of abscissas when the coordinate x decreases; and (b) the 
proof of its uniqueness. The existence and uniqueness of the branch U2 is 
proved analogously. To examine the branches V\ and V2 it is sufficient 
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FIGURE 63 FIGURE 64 

to change the sign of the time t; in this connection, stable branches will go 
over into unstable branches and conversely. 

Let us turn to the proof of the existence of the branch Ε/χ. For this we 
shall set 

ω(ζ, y) = V — ax2, a > 0, 

and we shall consider the parabola in the £i/-plane defined by the equation 

Φ, y) = 0. (8) 

The parabola (8) divides the plane into two parts: a positive part, contain
ing the positive semiaxis of ordinates, and a negative part. The positive 
domain will be the interior of the parabola. First we shall show that if a 
is a sufficiently large positive number and x is sufficiently small (\x\ < e), 
then all trajectories of system (7) (except the state of equilibrium 0) which 
intersect that part of the parabola (8) for which \x\ < e pass from the 
negative side into the positive, i.e., from the outside to the inside of the 
parabola (Fig. 64). For this we shall calculate the derivative ώ{7)(χ, y) 
of the function ω(χ, y). System (7) applied to the points of the parabola 
(8) yields 

ώ(7)(χ, ax2) = y — 2axx = α(μ — 2\)x2 + Sn-T2 + · · · 

(here the unwritten terms contain x to at least the third power). The 
number μ — 2λ is positive and the function Sn is bounded in the neigh
borhood of the origin; therefore a number a can be chosen so large that 

α(μ - 2λ) - | β η | > δ, δ > 0. 

The omitted terms in the expression for (bi7)(x, ax2) are at least third-
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FIGURE 65 FIGURE 66 

order terms in x and therefore a positive e exists such that for \x\ < e 
we have 

ώ(7)(ζ, ax2) > 0, 

where the equality sign holds only for x = 0, that is, at the point 0. 
From what has been proved it follows that all trajectories of system (1) 
except the state of equilibrium 0 intersect that section of the parabola (8) 
in the direction of increase of the function ω(χ, y), that is, from the outside 
inwards. 

In exactly the same way, it can be proved that the section \x\ < e of 
the parabola 

y + ax2 = 0 (9) 

is intersected by all trajectories of the system (7), except the state of 
equilibrium 0, from the outside inwards [the interior section of the parab
ola (9) contains the negative semiaxis of ordinates (Fig. 65)]. 

Let a and b be the points at which the straight line x = € intersects the 
parabolas (8) and (9), respectively. We consider the triangle [0, a, b] 
formed from two sections of the parabolas (8) and (9) and the line segment 
[a, b]. If e is sufficiently small, then all trajectories of (1) passing through 
the triangle [0, a, b] go from right to left (Fig. 66); in particular, they inter
sect the segment [a, b] from right to left in entering the triangle [0, a, b]. 
This follows from the fact that the expression 

x = λχ + r(x, y) 

[see (7)] is negative for 0 < x < €, \y\ < ax2
} since λ < 0, and r(x, y) 

is a "quadratic form" in x and y with bounded coefficients. 
Let <p(t, p) be a trajectory of system (7) starting at a certain point p 

of the interval (a, b) at t = 0. This trajectory enters the triangle [0, a, b] 
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through the side [a, b]. With an increase in t, it can either go out of the 
triangle through the parabolic arcs Oa, 06, or not go out of the triangle at 
all. In the latter case the trajectory approaches the point 0 asymptotically 
as t —» oo. It is geometrically obvious that if the trajectory <p(t, p) leaves 
the triangle through the arc Oa, then the trajectory <p(t, p'), where pf is a 
point of the interval (a, p), also leaves the triangle through the arc Oa 
(Fig. 66). Furthermore, if the trajectory φ{ί, p) leaves the triangle through 
the arc Oa, then by the integral continuity theorem (Theorem 16) the tra
jectory <p(t, p"), where p" is a point sufficiently close to p'y also leaves 
through the arc Oa. Thus the set of all such points p of the interval (a, b), 
for which the trajectory <p(t, p) leaves the triangle through the arc Oa, 
forms a certain interval (a, a'). (This interval is nonempty, that is, α' ^ a, 
since trajectories starting in points p which are sufficiently close to a 
obviously intersect the arc Oa.) In exactly the same way, the set of all 
such points p for which the trajectory <p(t, p) leaves the triangle through 
the side Ob forms an interval (b, b'). The intervals (a, a') and (b, b') 
cannot intersect, so that the point a' is located above the point W, or in 
the extreme case, coincides with it. (Actually, they coincide, but this 
requires a comparatively complicated proof.) Thus the segment [α', b'] 
contains at least one point, so that there exists a trajectory <p(t, ρ0), 
starting on the segment [α', b'] and approaching asymptotically the point 0. 

The tangent to the trajectory φ(ί, ρ0) at the point (x, y) has the slope 

* < * ' W - X * + r(x,y) 

Since the point (x, y) of the trajectory <p(t, p0) belongs to the triangle 
[0, a, b], 

\y\ < ax2, 0 < x < e, (10) 

whence it follows that the number k(x, y) remains finite and tends to zero 
as x —> 0. On the other hand, the slope l{x, y) of the secant drawn from the 
point 0 to the point (x, y) of the trajectory <p(t, p0) is equal to y/x, and 
since inequalities (10) are valid, we have l(x, y) —> 0 as x —> 0. Thus the 
curve <p(t, p0), based on the point 0, has at 0 a continuous derivative and 
is tangent to the axis of abscissas. The trajectory <p(t, p0) represents 
the branch [/χ. The branch U2, which approaches the point 0 along the 
negative part of the axis of abscissas, is also tangent to the axis of ab
scissas at the point 0. Both these branches together form a curve U with 
the equation 

V = u(x), (11) 

where u(x) is a continuous and continuously differentiable function of x, 
with u'(Q) = 0. 
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Thus we have proved the existence of stable branches C/i and U2, 
which together with the point 0 form the curve U defined by equation (11). 
We shall now prove the uniqueness of these branches. For this we shall 
transform the coordinate system in the neighborhood of the origin of the 
xy-plane so that the curve (11) becomes the axis of abscissas. To do this, 
we substitute a new unknown function z in place of y by the formula 

y = u(x) + z, (12) 

If we substitute (12) into (7), we obtain the new system of equations 

x = f(x, u(x) + z) = F(x, z), 
(13) 

z = g(x, u(x) + z) — u'(x)f(x, u(x) + z) = G(x, z), 

where the unknown functions are x and z. Since u{x) has a continuous 
derivative, the function F(x, z) has continuous derivatives with respect 
to the two variables x and z, and G(x, z) is continuous in x and has a 
continuous derivative with respect to z. However, the existence of a con
tinuous derivative of the function G(x, z) with respect to x has not been 
established. Thus it has not been established that our usual hypothesis 
concerning the continuous differentiability of the right-hand sides with 
respect to all the unknown variables holds for system (13). I t is obvious, 
however, that to every solution of system (13) corresponds by (12) a solu
tion of (7), and conversely. Thus the behavior of the trajectories of (7) can 
be determined by the behavior of the trajectories of (13). 

The stable branches Ui and C/2 of system (7) were transformed into 
segments of the axis of abscissas of the xz-plane, so that (13) has solutions 
in which the function x varies monotonically in a certain manner and 
approaches zero asymptotically, and the function z is identically zero. 
From this it follows that 

G(x, 0) = 0. 

Below we shall show [see (C)] that the function G(x, z) can be written in 
the form 

G(z, z) = zH(x, z), (14) 

where H(x, z) is a continuous function of x and z. It follows from (14) and 
the continuity of the function H(xy z) that 

dG{x, z) 
dz x=0 z->0 z " z-*0 2 

2 = 0 

= lim#(0,z) = #(0,0). 
2-»0 
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y 

FIGURE 67 

But by (7) and (13) we have dG(x, z)/dz\x=0 = μ, so that 
2=0 

#(0 , 0) = μ. 

Thus the second equation of (13) has the form 

z = zH(x, z), 

where H (x, z) is close to μ in the neighborhood of the origin and is therefore 
positive. Hence, in the neighborhood of the origin it follows that, along 
every trajectory which is distinct from the branches Ε/χ and t/2, the coordi
nate z does not change sign and its absolute value increases as t increases. 
Thus, no trajectory running outside the axis of abscissas of the xz-plane 
can approach the point 0 asymptotically, and the uniqueness of the 
stable branches Ui and U2 is proved. 

It has been proved that on the interval (a, b) there exists only one point 
Po such that a trajectory of (7) starting from p0 approaches the point 0 
asymptotically as t —» oo, forming the branch U\. If the point p lies in 
the interval (a, p0), then the trajectory starting from p intersects the arc 
Oa. If p lies in the interval (6, p0), then the trajectory starting from p 
intersects the arc 06. 

From the parabolas 
x — ay2 = 0, (15) 
x + ay2 = 0 (16) 

and the straight line 
V = e 

(Fig. 67), we can form a triangle [O, c, d] with properties similar to those of 
the triangle [O, a, 6]. There exists only one point q0 in the interval (c, d) 
such that the trajectory from q0 approaches asymptotically the point 0 
for decreasing t and forms the unstable branch V\. If the point q is located 
on the interval (c, q0), then the trajectory from q intersects the arc Oc 
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/(*,2/)=0 

FIGURE 68 

for decreasing t. If q is located on the interval (q0, d), the trajectory from q 
intersects the arc Od for decreasing t. 

Let us now consider the curve 

fix, y) = o (17) 

[see (7)]. It is easy to see that it is tangent to the axis of ordinates at the 
point 0. Since the function f(x, y) has continuous second derivatives, so 
that the curve (17) has a definite radius of curvature at the point 0, 
we can find a number a so large and a number e so small that on the 
interval \y\ < e the curve (17) passes between the parabolas (15) and 
(16) (Fig. 68). To the right of the curve (17) the function/(#, y) is negative, 
so that the phase velocity vectors at points located to the right of the 
curve (17) are directed to the left. Let us draw a vertical segment [c, e] 
from the point c, the lower end e of which is located on the branch U\. 
Let p be a point of the interval (a, p0). If the point p is sufficiently close to 
Po, then by the integral continuity theorem (see §25, Theorem 16) the 
point, after leaving p, will pass sufficiently close to the origin of coordinates 
to intersect the segment [c, e]. As it moves farther, it must necessarily 
intersect the arc Oc. Indeed, if the moving point intersects the line (17), 
then it must intersect the arc Oc before this. If the moving point does not 
intersect the line (17), then it will always move to the left, and the vertical 
distance z from this point to the line (11) increases; in this case, therefore, 
the trajectory intersects the arc Oc. Thus, the trajectory enters the tri
angle [0, c, d]. After this, the trajectory will have to intersect the interval 
(c, q0) at some point q. Conversely, if from the point q' of the interval 
(c, q0) we follow the trajectory in the direction of decreasing t, then for 
sufficiently close points q and q0 this trajectory intersects the interval 
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FIGURE 69 

(a, po) at some point p1 since it passes close to the origin (Fig. 69). Com
bining these two facts, it is easy to conclude that as p —> p0 we have q —» q0. 
This gives a complete qualitative idea concerning the behavior of tra
jectories in the neighborhood of a saddle. Thus Theorem 22 is proved. 

We shall now prove property (14) of the function G(x, z). 
(C) Let G(Xj z) be a continuous function defined in the neighborhood of 

x = z — 0 and having a continuous derivative (d/dz)G(x, z). If 

then 

G(x, 0) = 0, 

G(Xj z) = zH(x, z), 

where H{x) z) is continuous. 
To prove (C) we define the function H(x, z) by setting 

H(x, z) = G(x,z) for 

H(x, z) = — G(x, z) for e = 0, 
(18) 

and we show that this function is continuous. For z ?± 0 the function 
defined by (18) is obviously continuous. We shall prove that it is con
tinuous at the point (x0, 0). We have 

G(x, z) = G{x} z) - G(x, 0) = z | - G(x, fe), 
oz 

where 0 < Θ < 1. Since the function (d/dz)G(x, z) is continuous, we 
have G(x, z)/z = (d/dz)G(x, θζ) -> (d/dz)G(x0, 0) for x -> x0, z -+ 0(z ^ 0). 
Thus proposition (C) is proved. 

Behavior of trajectories in the neighborhood of a node and of a focus. The 
study of the node and of the focus is considerably simpler than that of 
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the saddle. Here it is sufficient to consider only the case of stability, 
since unstable nodes and foci are obtained from stable ones by changing 
the direction of the time flow. The principal method in the study of the 
node and the focus is the introduction of polar coordinates. 

Theorem 23. Let 0 = (0, 0) be a stable node of system (1) with eigen
values λ and μ, where μ < λ < 0. We draw through 0 a straight line P 
in the direction of an eigenvector with eigenvalue λ and a straight line Q 
in the direction of an eigenvector with eigenvalue μ. Then every tra
jectory starting sufficiently close to the point 0 approaches 0 asymptoti
cally and has a tangent at the point 0. Here only two trajectories are 
tangent to Q, and, in approaching the point 0 from the opposite side, all 
the remaining trajectories are tangent to P. When the node 
(0 < λ < μ) is unstable, the behavior of the trajectory as t —> — oo is 
similar. 

We shall assume the existence of the third derivatives of the right-hand 
sides of (7). By proposition (B), system (1) can be written in the form (5); 
again denoting the variables ξ and η by x and y, we obtain the system 

* = f(x, V) = ^x + r(x, y), 
(19) 

y = g(x, y) = μυ + Φ , y)> 
Here the functions r(x, y) and s(x, y) are three times continuously differ-
entiable and vanish at the point O together with their first derivatives with 
respect to x and y. 

Let us now introduce polar coordinates, i.e., we assume that 

x = p cos <p, y = p sin φ. (20) 

Differentiating (20) and substituting the result into (19), we obtain 

p cos φ — ρφ sin ψ — λρ cos φ + r(p cos <p, p sin <p), 

p sin φ + ρφ cos ψ = μρ sin φ + s(p cos φ, p sin ψ). 

Solving the relations obtained for p and φ, we obtain 

p = ρ(λ cos2 φ + μ sin2 φ) + F(p, φ), 
(21) 

ρφ = (μ — λ)ρ sin φ COS φ + G(p, φ), 

where the functions 

F(p, <p) = c o s Ψ ' r(P c o s <P> P s i n <P) + s n i <P ' S(P c o s <P> P ^n )̂> 
G(p, φ) = —sin φ - r(p cos φ, p sin φ) + cos φ - s(p cos φ, ρ sin φ) 
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are periodic in φ with period 2τ , three times continuously differentiable 
with respect to p and <pf and vanish at p = 0 together with their first 
partial derivatives with respect to p, giving 

m r t = G ( o , r t = ^ = ?«|*U„. (22) 

By proposition (D) cited below, the function (?(p, φ) can be written in 
the form 

(?(p, φ) = pH(p, <p), 

where H(p, φ) is a function which is twice continuously differentiable with 
respect to p and φ and which vanishes at p = 0 for arbitrary φ [see (32) 
and (22)], giving 

H(fl, φ) = 0, (23) 

so that 
Θ-Άή = o. (24) 

οφ 

Dividing the second of relations (21) by p we obtain the system 

ρ = ρ(λ cos2 ψ + μ sin2 φ) + F(p, φ), 
(25) 

Φ = (μ — λ) sin φ cos φ + H(p, φ). 

We shall consider the system (25) on the phase plane of the variables p 
and <p, plotting φ on the axis of abscissas and p on the axis of ordinates. 
The systems (19) and (25) are by no means equivalent, since the trans
formation (20) of the ;n/-plane into the p<p-plane is not one-to-one; never
theless, from the behavior of the trajectories of (25) we can draw certain 
conclusions about the behavior of the trajectories of (19). The behavior 
of the trajectories of (25) will be considered only in the strip \p\ < e. 
Let us first find the state of equilibrium of the system (25). From the first 
equation of (25) it is evident that for sufficiently small p ^ O the value 
of p is not zero [see (22)], and therefore in the band \p\ < e all states of 
equilibrium lie on the axis p = 0. After this we find all states of equilib
rium from the second equation of (25) [see (23)]: 

p = 0 , <Ρ = ^ξ, k = 0, ± 1 , ± 2 , . . . . 

If we linearize the system (25) at the point p = 0, φ = kw/2, we obtain 

Δρ = μΑ Δρ, 

Αφ = (μ — λ) · (—1)* Αφ + ak Δρ, 
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FIGURE 70 

where μk (which is equal to λ for even values of k and to μ for odd) is a 
negative number. Thus the point p = 0, φ = kir/2 is a stable node of 
(25) whenever k is even and a saddle when k is odd (Fig. 70). Here the 
unstable branches of a saddle are directed along the <p-axis and the stable 
branches along the curves which approach the saddle from above and from 
below (see Theorem 22). 

We shall now show that for sufficiently small positive €, every solution 
of system (25) which starts in the strip \p\ < e either is a stable branch 
of one of the saddles of the system (25) or, by not leaving the strip 
\p\ < €, approaches asymptotically one of the nodes of (25). 

To every state of equilibrium p = 0, φ = kw/2 we shall make corre
spond its neighborhood Uk defined by the inequalities |p| < δ, 
\φ — kw/2\ < δ, where δ is a positive number. If k is even, then the 
state of equilibrium under consideration is a stable node, and by virtue of 
its asymptotic stability there exists a positive number δ so small that 
every solution which starts in the neighborhood Uk approaches the node 
asymptotically. If k is odd, then the corresponding state of equilibrium 
is a saddle, and there exists a positive number δ so small that a solution 
different from the state of equilibrium and starting at Uk either describes 
the stable branch of a saddle or leaves the neighborhood Uk (see Theorem 
22). Since the right-hand sides of (25) are periodic in <p} it is possible to 
select a positive δ, which is common for all neighborhoods U^ Now it is 
possible to select a small positive number e < δ such that in the strip 
|p| < e the right-hand side of the first of the equations (25) has a sign 
opposite to that of p, so that for every solution which starts in this strip, 
the quantity |p| decreases. Further, for fixed δ we can choose a small 
positive number € such that in the rectangle 

ι ι ^ kw , „ . . (k + l)?r 
|p| < €, -j + δ < φ < V T, δ 
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the right-hand side of the second of the equations (25) does not change 
sign, and its absolute value does not exceed some positive number a, 
so that the solution starting in this rectangle leaves it within a period of 
time not exceeding the number π/2α and enters that neighborhood Uk 
or £/fc+i corresponding to the stable node. By the periodicity of the 
system (25) in <p, the number e can be taken to be the same for all rec
tangles under consideration. 

We now see that for this value of e every solution which starts in the 
strip \p\ < e either passes through the stable branch of the saddle or 
approaches the stable node asymptotically. 

To every solution of system (25) which starts in \p\ < e there corre
sponds a solution of system (19) which starts at a distance less than e 
from the stable node 0 of this system. In order to obtain all such solutions 
of (19), it is sufficient to consider only solutions of (25) starting at 
0 < p < €. By the periodicity of the system (25) in φ and by the peri
odicity of the transformation (20), there exist only two solutions of (19) 
corresponding to stable branches of saddles of the system (25) which pass 
through for p > 0, and these solutions of (19) approach the state of 
equilibrium 0 asymptotically, being tangent to the straight line Q and 
approaching 0 from opposite sides. To those solutions of (25) which tend 
to stable nodes correspond solutions of (19) which tend to the state of 
equilibrium 0 and which are tangent to the straight line P as they ap
proach 0. Thus Theorem 23 is proved. 

THEOREM 24. Let us assume that the origin 0 of system (1) is a focus, 
i.e., that the eigenvalues of the matrix (a}) are the complex conjugate 
numbers 

λ = μ + tVj λ = μ — tVj 

where μ ^ 0, v ^ 0. Thus if μ < 0, then as t —> oo all trajectories 
passing through some neighborhood of the point O spiral around the 
origin; if μ > 0, then as t —-> — oo all trajectories passing through a 
neighborhood of the point 0 spiral around the origin 0. 

Proof. For the proof we shall use the canonical form (6) by rewriting the 
variables £ and η as x and y. Thus it is necessary to study the system of 
equations 

* = f&, V) = Vx — vy + r(x, y), 
(26) 

V = Q{x, y) = vx + μy + s(x, y). 

We introduce polar coordinates, i.e., we set 

x = p cos <p, y = p sin φ. (27) 
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Differentiating (27) and substituting the expressions obtained into (26), 
we have 

p cos φ — ρφ sin <p = μρ cos ψ — vp sin φ + r(p cos φ, ρ sin <p), 

p sin φ + ρφ cos <p = vp cos <p + μρ sin <p + s(p cos <p, p sin φ). 

Solving the system of equations obtained for p and Φ, we obtain 

p = μρ + ρ2ρ(ρ, <p), 
(28) 

Ψ = v + pq(p, <p), 

where p(p, <p) and q(p, <p) are functions which are bounded for small p 
and periodic in φ with period 27Γ. To be specific, we shall assume that 
μ < 0. We shall consider the trajectory of system (28) which starts at 
the point (p0, φο), where 0 < p 0 < € and € is a sufficiently small number. 
From equations (28) it follows that this trajectory approaches asymptoti
cally the axis p = 0, where φ tends either to +oo or to — oo, depending 
on whether v is positive or negative. Hence it follows that the correspond
ing trajectory in the x2/-plane spirals around the origin. Thus Theorem 24 
is proved. 

The following proposition (D), which is essentially a generalization of 
proposition (C) proved above, is used only in proving Theorem 23. 

(D) Let G(p, φ) be a function defined in the domain W which is given 
by the inequalities \p\ < e, βι < φ < β2 and satisfies the condition 

G(0, φ) = 0, (29) 

and which has the property that the function 

dG(p, φ) 
dp 

exists and has continuous partial derivatives up to order r inclusive. 
Then in the domain W the function G(p, φ) can be written in the form 

G(p, φ) = ρΗ(ρ, φ), (30) 

where the function H(p, φ) is defined by the equations 

H(p, Ψ) = %%£, for p * 0, 
9 (31) 

and has continuous partial derivatives up to order r inclusive in the domain 
W. [For r = 0, proposition (D) reduces to proposition (C)]. 
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To prove (D) we consider the function 

K<P,*) = ^ £ > 0<s<r, (32) 

which has continuous partial derivatives in the domain W with respect to 
p up to order s + 1 inclusive and satisfies the condition 

K(0, φ) = 0 (33) 

[see (29)]. We shall prove that for p ^ 0 the inequality 

dk+1K(eiP> φ) l_ (K{p, <p)\ _ A 
dpk+! 0 < k < s, (34) 

holds, where, for every fixed fc, the numbers T0, 7i, . . . , 7& do not depend 
on the function G(p, >̂) and satisfy the condition 

To + 7i + · · · + yk = ^ ^ (35) 

and the numbers Θ0, 0i, . . . , 0jb satisfy the inequalities 

0 < 0* < 1, i = 0, 1, . . . , *. (36) 

Calculating the derivative (dk/dpk)(K(p, φ)/ρ) by the Leibniz formula, 
we obtain 

1 
dpk * ΓΊΓ-; - ^ haip -w-' (37) 

where, for every fixed k, the numbers a0, ai , . . . , a* do not depend on the 
function (?(p, <p). Expanding each of the functions dlK(p, φ)/ορ\ 
i = 0, 1, . . . , fc, in Taylor series in powers of p, we obtain 

d*K(p, φ) _ a 'g(0, φ) + p di+XK(0, φ) ^ 
dp* dpi 1! dpi+i 

■ P"-* dkK(0,y) pk-i+1 dk+1K(eiP, φ) 
"·" (k — t )! θρ* "^ (A; — i + 1)! dp*+i 

(38) 

Furthermore, on substituting (38) into (37), we obtain by virtue of (33) 

dpk 

k_ (K(p, φ)\ l ΓΑ * aft(o, „) A fc+1afc+1g(gjP,y)l 
Λ P /~Ρ*+1ίέΐΜ θρί + £ Ό * *Pfc+1 J 

(39) 
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where b{ and 7j are constants which, for every fixed fc, do not depend on the 
choice of the function G(p, <p). 

To prove the relations (34) it is sufficient to establish that the constants 
&i, . . . , bk equal zero and that the constants 70, 7χ, . . . , 7& satisfy condi
tion (35). Since these constants do not depend on the choice of the func
tion G(p, φ), it is sufficient to establish these properties for any functions 
(?(p, φ) whatsoever. We consider the case when G(p, φ) is the polynomial 

ο ( ρ ^ ) = 7 ^ π · £ § ί Ρ ί · (40) 

By (32) we find that 

(r — s)\ 4-^Λ i\ 

dk (K{p, φ)\ _ ak+1 
dp>° \ p ) ~ k + 1 <■ ; 

On the other hand, the identity (39) for the polynomial (40) has the form 

dpk ( ^ ) - ^ΡΪ [Σ ^ + «*-MP*+1 Σ y] · (42) 

The right-hand sides of (41) and (42) must coincide for |p| < e, p ^ 0, 
but since the numbers <*i,. . . , ajt+i are arbitrary, it follows that the 
numbers &i, . . . , &*? are equal to zero, and (35) then follows. Thus 
formula (34) is proved. 

We now consider the function Lk(p, φ), k = 0, 1, . . . , s, and set 

i afc+1#(o, φ) Lk(0, φ) = k + 1 dpk+i 

From (34) and (35) it follows that Ζ/&(ρ, φ) is a continuous function of both 
p and φ in the entire domain W. I t is clear that f or p 5̂  0 the inequalities 

I* + i (p ,» ) = * L f f i y ) > * = 0 , 1 , . . . , . - 1 , (44) 

hold. Let us prove that the equalities are also valid for p = 0. Let 
0 < Po < €> 0 < P < €J then we have 

Lk(p, φ) = Lk(po, φ) + / £*+l(£, *>) <*£· (45) 

Since the functions on both sides are continuous, this equality is also valid 
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for p = 0, so that we have 

L*(0, φ) = Lk(p0, φ) + / Lfc+i({, φ) dl (46) 

Subtracting (46) from (45) and dividing the result by p, we obtain 

Lk(p, , ) - L»(Q, , ) _ i l L * + ^ *> d* 
P P 

Passing to the limit as p —» 0, we see that the right-hand derivative of the 
function Lk{p, φ) with respect to p at the point p = 0 exists and is equal 
to Lfc+i(0, φ). In exactly the same way we can prove that the left-hand 
derivative is also equal to Lfc+i(0, φ). Thus (44) is valid in the entire 
domain W. 

From (43) and (32) with k = 0 and s = r we obtain (30) and (31), and 
from (44) and (32) it follows that the function H(p, φ) has the continuous 
derivative 

3'ΤΪ?(Ρ'φ)> 0<k<s, 0<s<r, 

which means that the function H(p, φ) has continuous partial derivatives 
up to order r inclusive. Thus proposition (D) is proved. 

31. Stability of periodic solutions. In this paragraph we shall study the 
problem of stability of periodic solutions of autonomous systems and of 
systems with periodic right-hand sides. 

The concept of stability. In §26 we gave the definition of Lyapunov 
stability of a state of equilibrium of an autonomous system. First of all, 
we shall give here a definition of Lyapunov stability of the solution of an 
arbitrary system of equations. 

Let 
x = t(t, x) (1) 

be the vector form of an arbitrary normal system of nth-order equations 
whose right-hand sides, together with their derivatives dfl(t, x)/dx\ are 
defined and continuous in a certain domain Γ of the space of the variables 
t, x. The solution of equation (1) with initial values 0, £ will be denoted by 

Definition. A solution <p(t) of equation (1) with initial values t0, x0 is 
called Lyapunov stable if the following conditions are fulfilled: (1) There 
exists a positive number p such that, for |xi — x0| < p, the solution 
<p(t, to, Χχ) is defined for all values t > t0; in particular, the solution <p(t) it
self is also defined for all t > t0. (2) For every positive number e, a positive 
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number δ < p can be found such that for |χχ — x0| < δ we have 
\<p(t, t0, Xi) — <p(t)\ < e for t > t0. The solution <p(t) of equation (1) 
which is Lyapunov stable with initial values t0, Xo is called asymptotically 
stable if a positive number σ < p can be found such that for |χχ — x0| < σ 
we have 

\<p(t, t0, Xi) — φ(ί)\ —> 0, as t -> oo. 

The definitions presented here of Lyapunov stability and of asymptotic 
stability are invariant with respect to the choice of initial values to, Xo of 
the solution <p(t). This can easily be derived from Theorem 18. 

In the particular case when the system (1) is autonomous and the solu
tion <p{t) is the state of equilibrium, the definitions of stability given here 
coincide with those given in §26. 

We shall now consider systems (1) whose right-hand sides are periodic 
functions of t with period r, 

f(< + T, x) = f(i, x), (2) 

and also systems (1) which are autonomous 

f(*,x) = f(x). (3) 

In both cases the problem of stability of a periodic solution with period r, 

φ(1 + T) = φ(ι), (4) 

will be investigated, and, in the case of an autonomous system, the periodic 
solution will be assumed to be different from the state of equilibrium. In 
the case of the periodic system [see (2)], sufficient conditions for the asymp
totic stability of the solution (4) with period r will be given. The autono
mous-system is a particular case of the periodic system, so that we might 
expect that these conditions apply also to a periodic solution of the auton
omous system. It turns out, however, that they are not fulfilled (a periodic 
solution of an autonomous system cannot be asymptotically stable), so that 
for the Lyapunov stability of a periodic solution of the autonomous 
system, we shall give other weaker conditions. 

(A) In order to study the behavior of solutions of (1) in the neighbor
hood of the solution <p(t), we shall introduce a new unknown vector func
tion y by setting 

x = φ(ή + y. (5) 

In what follows we shall assume that the right-hand sides of (1) have 
continuous second-order derivatives in the domain with respect to the 
coordinates of the vector x. Replacing the variables in system (1) by (5), 
using the fact that <p{t) is a solution of (1), and expanding the right-hand 
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sides in powers of y, we obtain 

ϊ = Σ df\f)] yj + Λ*. y)· (ß) 
5 

By linearizing this system, i.e., by discarding the terms rl which are at 
least of the second order in y, we obtain the linear system 

y = A(t)y, (7) 

where A (t) is a matrix with elements 

df% <p{t)) a}(0 = dxi 

We shall now assume that the right-hand side of (1) is a periodic function 
of t with period r [see (2)] and that the solution <p(t) is also periodic with 
period r. Under these assumptions, the linear system (7) is periodic with 
period r : 

*)(t + T) = aft), i, j = 1, . . . , n, 

so we can speak about its characteristic numbers [see §19, (E)]. Thus 
whenever (1) is autonomous [see (3)] and its periodic solution φ{ί) is not 
a state of equilibrium, the linear system (7) necessarily has one char
acteristic number equal to unity. 

Let us prove this last assertion. Let Φ(ί) be a matrix which satisfies the 
matrix equation 

* = A(t)* 
with the initial condition 

*(«o) = E, (8) 

and let C be the fundamental matrix of the solution V(t) [see 19, (A)], so 
that 

Φ(* + τ) = *(t)C. (9) 

It is seen directly that any solution \f/(t) of (7) may be written in the form 

ψ(ί) = ¥(0*(*o). 

From this and from (8) and (9) it follows that 

t(t0 + T) = Οψ(10). (10) 

Remembering that (1) is autonomous, we have [see (3)] 

*(o = fO(o), 
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which, when differentiated with respect to t, gives 

φ{1) = Α(ΐ)φ(ΐ). 

Thus the vector function φ(ή satisfies the vector equation (7). But φ(ί) 
is periodic with period r, so that from (10) we obtain 

Hk) = Wo + r) = Cp(t0), (11) 

and since φ(ίο) ^ 0 because <p(t) is not a state of equilibrium, it follows 
that the matrix C has an eigenvalue equal to unity and consequently one 
of the characteristic numbers of (7) is equal to unity. 

The theorems of Lyapunov and Andronov-Witt. Now we can formulate 
sufficient conditions for the stability of the periodic solution <p(t) whenever 
system (1) is periodic and whenever it is autonomous. 

THEOREM 25. Let equation (1) be periodic in t with period r [see (2)], 
and let φ{ί) be a periodic solution of (1) also having period r [see (4)]. 
If the absolute values of all characteristic numbers of (7) [see §19, (E)] 
are less than unity, then the solution <p(t) is asymptotically stable; 
moreover, there exists a number σ > 0 such that for |xx — x0| < σ 
the bound 

\<p(t; t0, xi) - <p(t)\ < re-at\xx - x0|, t > t0, (12) 

holds, where r and a are two positive numbers which do not depend on Χχ. 

THEOREM 26. Let (1) be autonomous and let <p(t) be a periodic solution 
with period r which is distinct from the state of equilibrium. If the 
characteristic number of (7), which is equal to unity, has multiplicity 
one and if the absolute values of all remaining characteristic numbers of 
(7) are less than unity, then the solution φ(ί) is Lyapunov stable. 

Theorem 25 was formulated by Lyapunov. Theorem 26 was derived by 
Andronov and Witt as a rather simple corollary of a rather obscure theorem 
of Lyapunov. We shall give here an alternative proof of Theorem 26, 
which will be based on Lyapunov's method. 

We shall preface the proofs of Theorems 25 and 26 with certain con
structions which will prove useful. 

In §25 we gave the definition of the derivative of a certain function with 
respect to an autonomous system of equations. We shall present it here 
for the case of a nonautonomous system. 

(B) Let 
F(x) = F{x\ . . . , xn) 

be a scalar function of the vector variable x. We define the derivative 
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F(i)(h, xo) of this function with respect to system (1) at the point t0, x0 
in the following manner. Let <p(t) be the solution of equation (1) with 
initial values to, x0. If we set 

FW(t0,Xo) = jtF(V(t)) 

and perform the differentiation indicated on the right-hand side, we obtain 

t=t0 

i=l 

Whenever (1) is autonomous, the derivative F(i)(i, x) of the function F(x) 
with respect to (1) at the point t, x does not depend on t> 

(C) Let 
z = Bz + p(t, z) (13) 

be a normal system of differential equations in vector form, where B = (&*·) 
is a constant matrix, all of whose eigenvalues have negative real parts, and 
p(t, z) is the remainder defined for t > to, \z\ < c (c > 0) and possessing 
the bound 

|p(i, z)| < p|z|2, (14) 

where p is a positive number. Thus the solution z = 0 of equation (13) 
is asymptotically stable; moreover, the estimate 

|x(*,zi)l < ΦχΙβ-* t > t0, (15) 

is valid for the solution z = X(£, zx) with initial values t0,Zi, |ζχ| < C\ < c, 
where r and a are positive numbers which do not depend on Ζχ. 

Proposition (C) may be proved in exactly the same way as Lyapunov's 
theorem (see §26). We shall carry out this proof without going into 
excessive detail. 

Let W(z) be Lyapunov's function for the linear system 

z = Bz (16) 

with constant coefficients [see §26, (E)], so that the inequality 

^(i6)(z) = £ n S ^ W ^ -2ßW(z), ß>0, 
1,3 

holds. From this inequality and from (14) we obtain for W(z) < c2 the 
inequality 

*<»>« = Σ ^ & + Σ ^ P'ft*) < -2aWiz), 
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where a < ß and c2 are certain positive numbers. Let us set 

ii,(0 = W(x{t} zi)) for W{zx) < c2. 

For the function w(t), t > t0, the inequality 

w(t) < -2aw(t) (17) 

holds whenever the relation 
w(t) < c2 

is valid. From (17) it follows that when the inequality w(t) < c2 is valid, 
the function w(t) decreases (or, more accurately, it does not increase), 
and since at the initial moment t = t0 the inequality w(t) < c2 is fulfilled, 
the point X(t, zx) cannot leave the closed set F defined by the inequality 
W(z) < c2, so that the solution X(t, zx) is defined for all values t > t0 
[see §24, (B)] and (17) holds for all these values. Assuming now that 
Ζχ 7* 0, we may perform the following calculations, starting from (17): 

w(t) 

or, by integrating, we obtain 

In w(t) - In w(t0) < -2a(t — i0), 

and from this follows 

w{t) < w{tQ)e-2ait-^\ 

or, what is the same thing, 

W{x{t, zi)) < Wizje-2"«-^. 
The estimate (15) follows directly from this estimate. Thus proposition 

(C) is proved. 
Proof of Theorem 25. By Theorem 12 there exists a transformation 

y = T(t)z, (18) 

where the matrix T(t) is real and has period 2r, which transforms (7) into 
the equation 

z = Bz 

with a constant real matrix B. The solution of the equation z = Bz 
is the matrix etB [see §19(C)], so that the matrix e2TB is fundamental for 
this equation as well as for equation (7). Thus by the hypotheses of 
Theorem 25 the absolute value of each eigenvalue of the matrix e2TB is 
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less than unity. But according to Theorem 27, the eigenvalues of the 
matrix e2TB have the form e 2 r \ where λ runs through all eigenvalues of B. 
Thus | e 2 n | < 1, so that all eigenvalues of B have negative real parts. 
Under the transformation (18) equation (6) can be reduced to the form (13), 
and for its solution z = χ(ίχ, ζχ) we obtain the estimate (15). From this 
estimate and from the fact that the matrix T(t) is nondegenerate, we 
obtain the estimate (12). Thus Theorem 25 is proved. 

Proof of Theorem 26. Proceeding from the assumption that equation 
(7) has a characteristic number equal to unity and of multiplicity one and 
that the absolute values of all remaining characteristic numbers are less 
than unity, we shall show that there exists a transformation 

y = T(t)z (19) 

with a real matrix T(t) of period 2r, which transforms (7) into the equa
tion 

z = JSz (20) 

with a constant matrix B of the form 

! n\ 
(21) /B* I o\ 

\o I o/ 
where B* is a square matrix of order n — 1, all of whose eigenvalues have 
negative real parts. 

Let C be the fundamental matrix of a certain solution of the matrix 
equation [see (7)] 

Ϋ = A(t)Y. (22) 

Since C has an eigenvalue equal to unity and of multiplicity one, then in 
some basis it has the form 

(rl-3 (23) 

where (7* is a real square matrix of order n — 1, all of whose eigenvalues 
have an absolute value less than unity [see §32, (G)]. Since the matrix 
C and the matrix (23) may be obtained from each other by a linear trans
formation, the matrix (23) is fundamental for some solution of (22); we 
shall assume that C coincides with the matrix (23). By proposition (D) 
of §33 there exists a real matrix B* which satisfies the condition 

2τΒ* _ /Ύ*2 

where, by Theorem 27, all eigenvalues of the matrix B* have negative 
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real parts. I t is clear that the matrix B [see (21)] satisfies the condition 

e2TB = C2 

[see (23)]. Thus (compare the proof of Theorem 12) there exists a trans
formation (19) which transforms (7) into (20). 

We shall now determine those conditions which the matrix T(t) must 
satisfy in order that the transformation (19) transforms (7) into (20). 
Differentiating (19), we obtain 

y = f(t)z + T(t)i = f(t)z + T{t)Bz. 

Replacing z in this equation by the formula z = T~1(t)y, we obtain 

y = (t(t) + T{t)B)T-l(t)y. 

Since this equation coincides with (7), we have 

(t(t) + T{t)B)T'\t) = A(t), 

and, by multiplying this relation on the right by the matrix T(t), we obtain 

t{t) + T(t)B = A(t)T(t). (24) 

This condition imposed upon the matrix T(t) is necessary and sufficient 
for transformation (19) to transform (7) into (20). We shall decompose 
(24) into two relations by representing the matrix T(t) in the form 

T(t) = (T*(t), t (0) , 

where T*(t) has n rows and n — 1 columns and where the matrix t(£) 
is the last row of the matrix T(t) and therefore is a nonzero vector. We 
obtain [see (21)] 

f*(t) + T*(t)B* = A(t)T*(t), (25) 

t«) = A(t)t(t). (26) 

From the last relation it is clear that t(t) is a periodic solution with period 
2r of equation (7) so that the condition 

t(*o) = t(<0 + 2r) = CH(t0) 

is satisfied [compare (10)]. Thus the vector t(t0) is an eigenvector of the 
matrix C2 with an eigenvalue equal to unity. Since the matrix 

c2 ■ r 1-3 
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has unity as a simple eigenvalue and since we already know one vector 
φ(ίο) 5* 0 with this eigenvalue in the matrix C2 [see (11)], we have 

t(«o) = ^(<o), 
and therefore 

t(0 = 7j>(0, 

since both vector functions t(i), <p{t) are solutions of (7). From this it is 
clear that if we replace the last column t(t) of T(t) by the vector φ(ί), 
then the matrix (T*(t), φ(ί)) obtained again will satisfy conditions (25) 
and (26). Therefore we shall assume that 

T(t)= (Γ*(0 ,* (0 ) . (27) 

Starting from (25) and (27), we shall transform the unknown function x 
of equation (1) in the autonomous case [see (3)] into the new unknown 
functions z* and s, where z* = ( 2 1 , . . . , zn~l) is an (n — l)-dimensional 
vector (which will be regarded in the sequel as a matrix with one column) 
and where s is a new scalar variable. For this we set 

x = Γ * « ζ * + φ(ε) = g(z*, s). (28) 

This transformation is periodic in s with period 2r. To each pair z*, s 
relation (28) places in correspondence for sufficiently small |z*| the point 
x, which is close to the point φ(έ) of the periodic trajectory K defined 
by the solution x = <p(t). In the neighborhood of each pair z* = 0, 
s = s0 relation (28) is a one-to-one transformation, since the functional 
determinant of this transformation at the point z* = 0, s = s0 is equal 
to the determinant of the matrix T(s0) [see (27)] and therefore is distinct 
from zero. The coordinate s of the pair (z*, s) will be assumed to be a cyclic 
coordinate with period 2r, i.e., we shall identify the pair (z*, s) and 
(z*, s + 2r). Since the pairs (0, s0) and (0, s0 + r) are mapped by (28) 
into the same point <p(s0) of the trajectory K, some neighborhoods of the 
pairs (0, s0) and (0, s0 + r) are mapped one-to-one into the same neigh
borhood of the point <p(s0) of K. Thus, transformation (28) maps the set 
of all pairs (z*, s) (for sufficiently small |z*|) in a two-to-one manner onto 
some neighborhood of K. Here the closed curve consisting of all pairs 
(0, s), 0 < s < 2r is mapped onto the line K twice. 

We shall now substitute into equation (1) [see (3)] the unknown vector x 
according to formula (28). Substitution into the left-hand sides gives 

x = T*'(s)z*s + T*(s)i* + <p'(s)s. (29) 

Substitution into the right-hand side gives 

f(x) = f(*(*)) + A(s)T*(s)z* + R(s, z*), (30) 
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where the remainder R(s, z*) is periodic in s with period 2r and is an 
infinitesimal of the second order with respect to the vector z*. Equating 
the right-hand sides of (29) and (30), we obtain 

T*(s)z* + φ'(β)έ + T*'(s)z*s =. f(*(e)) + A(s)T*(s)z* + Ä(s,z*). 

Replacing the matrix A(s)T*(s) according to formula (25) and substituting 
φ'($) for f[^(e)], we obtain 

T*(s)i* + φ'(8)έ + T*'(S)Z*S = φ'(8) + (T*'(s) + T*(s)5*)z* + Ä(S, Z*), 

whence 

T*(s)(z* - B*z*) + («/(«) + Τ*'(β)ζ*)(ί - 1) = Ä(*, z*). (31) 

We now consider two new auxiliary variables, the vector 

u*(w\ . . . , u71"1) 

and the scalar un. In the n-dimensional space of the variables (u*, un) = 
(ulj u2

) . . . , un) we consider the linear transformation M which depends 
on the parameters s and z*, and set 

M(u*, un) = T*(s)u* + (φ'(8) + T*'(s)z*)un. 

For z* = 0 the transformation M reduces to T(s), so that close to zero M 
is nondegenerate. Thus the equation 

M(u*, un) = Ä(s, z*) 

can be solved uniquely (for z* close to zero) for the unknowns u*, un, and 
the solution 

u* = q*(s, z*), 
i*· = q(s, z*) 

is periodic in s with period 2r and is an infinitesimal of the second order 
with respect to z*. Since (31) can be rewritten in the form 

M(z* - B*z*, i - 1) = R(s, z*), 

we obtain 
έ * _ B*Z* = q*(s, z*), s - 1 = ff(e, z*). 

Thus in terms of the variables z*, s, equation (1) may be written in the form 

z* = B*z* + q*(e, z*), (32) 

s = 1 + β(β,ζ*). (33) 
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There now exists a positive number e such that for |z*| < e the re
mainder q(s, z*) satisfies the inequality |g(s, z*)| < 1. When this inequal
ity is satisfied for every solution z* = z*(t), s = s(t), then s may be 
taken in place of t as the independent variable, and equations (32) and (33) 
may be rewritten in the form 

d z ^ _ g*z* + q*(e, z*) 
ds "" 1 + q(Sj z*) 

§L = 1 

ds 1 + g(s, z*) ' 

= ß*z* + k*(s, z*), (34) 

or 
dz* 

| = l + fc(s,z*), (35) 

where the remainders k*(s, z*) and k(s, z*) are periodic in s with period 
2r and are infinitesimals of the second order with respect to the vector z*. 

In the system (34), (35), s is the independent variable, but z* and t 
are considered to be unknown functions of s. Equation (34) does not con
tain the unknown function t and can be solved separately. Thus, in order 
to find the solution of the system (32) and (33) with initial values t0, 
z*, 8\, it is first necessary to find the solution z*(s, z*, Si) of (34) with 
the initial values z*, $i which by proposition (C) is defined for all values 
s > si for sufficiently small |z*| and has the estimate 

|**(«,*?,«i)l <r\z*\e-°°. (36) 

After this we must find the solution of (35) with the initial values t0, z*, Si ; 
this solution is given by the obvious formula 

t=t0+ [l + k(s, z*(s, z j , si))] ds 

= to — $i + s + / fc(«, z*(«> z*> «i)) ds. (37) 

The last equation can be solved for s whenever |z*| is sufficiently small, 
so that we obtain 

s = s(t, z?, βι). (38) 

Substituting this expression for s in the solution z*(s, z*, sx) of equation 
(34), we have 

z*(i) = ζ*(θ(ί, ζ ί , S l ) , z j , θι). (39) 
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Formulas (38) and (39) together give the solution of the system (32), 
(33) with the initial values t0, z*, ele From (37) it follows that for t > t0 
we have 

|«(*,*ϊ,*ι) - t \ < |βι -t0\ + l\z*i\2, (40) 

where I is some positive constant. In the particular case when z* = 0, 
*i = <o, the solution (38), (39) has the form 

z*(t) == 0, s(t) = t 

From the estimates (36) and (40) it follows that this solution of the sys
tem (32), (33) is Lyapunov stable. 

If we substitute the solution (38), (39) into the transformation formula 
(28), we obtain the solution x = <p(t, Χχ) of equation (1) with initial 
values t = t0, x = *i = ^(z*, Si). Since (28) is a one-to-one mapping 
onto some neighborhood of the pair z* = 0, s = t0, any solution <p(t, Xi) 
of equation (1) with initial values t0, Χχ can be obtained in this way from 
a certain solution (38), (39) of the system (32), (33) for sufficiently small 
|xx — x0|. Here the solution x = <p(t) is obtained from the solution 
z* = 0, s = t. Now the Lyapunov stability of the original periodic 
solution x = <p(t) follows from the Lyapunov stability of the solution 
z* = 0, s Ξ= t and from the uniform continuity of (28). Thus Theorem 
26 is proved. 

Let us apply the results obtained here to the case of a limit cycle. 
(D) We shall assume that the autonomous system (1) [see (3)] is of the 

second order: 
xi = f(x1,x2)=f(x), » = 1 , 2 , 

and let 
x = φ{1) 

be its periodic solution with period τ. Here system (7) has the form 

.i a f (o(0) i ■ */ '(*«)) y2 i = 1 2 

By proposition (A) one characteristic number of this system is equal to 
unity; the second will be denoted by λ. Then 

Thus if 
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(I S(t)dt\, 

then the periodic solution x = φ(ί) is Lyapunov stable. In fact (see ex
ample) there exists a succession function X(u) of the periodic solution 
x = φψ) (see §28) for which 

X'fao) = λ, (42) 

so that for λ τ* 1 the periodic solution x = φ(ί) is a rough limit cycle. I t 
is stable f or λ < 1 and unstable f or λ > 1. 

Let us prove the inequality (41). The fundamental matrix C of the 
solution Y = Φ(ή of the equation Ϋ = A(t)Y with initial value Ψ(0) = E 
[see (A)] is given by the equality 

C = ¥ ( T ) . 

By Liouville's formula we have 

Det ¥ ( r ) = Det *(0) · exp I 

where 

[see §17, (G)]. In our case, when the matrix C is of second order, and one 
of its eigenvalues is equal to unity and the other is equal to λ, we have 

x=Dete=e4/;(M+M)4 
EXAMPLE 

Let <p(t) be the periodic solution of the autonomous system (1) [see (3)] 
with period r with the initial values t0, Xo· The solution of this system with 
initial values t0, ξ will be denoted by <p(t, ξ). We shall construct for the 
solution <p(t) an analogue of the succession function (see §28), which here 
will be a mapping of the (n — l)-dimensional space of variables into itself. 

Let 
x = g (u) ; u = (u1, . . . , u*"1) (43) 

be the equation of a surface which intersects the trajectory φ(ί) at the 
unique point 

x0 = <p(t0, x0) = g(u0) (44) 

and which is not tangent to the trajectory <p(t) at this point, so that the 
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vectors 

are linearly independent. Let us find the intersection of the trajectory 
<f>[t> g(u)] with the surface (43) at t close to t0 + r, assuming that |u — u0| 
is small. Let g(v) be the point of intersection; then the relation 

*(*, g(u)) - g(v) = 0 (46) 

holds. For u = u0, we have the trivial solution of equation (16) : 

t = t0 + T, v = u0 

[see (4) and (44)]. Here we consider u as an independent variable and t, 
v as unknowns. Since the functional determinant of (46) at t = t0 + r, 
u = u0, v = u0 with respect to the unknown functions t and v does not 
vanish because of the linear independence of the vectors (45), then for 
small |u — u0|, there exists a solution 

t = i(u), v = X(u) 

of (46) with small \t(u) — (t0 + r)\ and |x(u) — u0|. The mapping 
X(u) of the space of variables u1,. . . , u71^1 into itself (which is defined for 
small |u — u0|) will be called the succession mapping. To each solution 
u = Ui of the equation 

X(u) - u = 0 (47) 

corresponds the periodic solution <p\t, g(ux)] of the autonomous equation 
(1) [see (3)] with a period close to r ; in particular, to the solution u = u0 

corresponds the original periodic solution <p(t) = <p(t, g(u0)). If the func
tional matrix 

\ du) ) 

does not have eigenvalues equal to unity, then the solution u = u0 of (47) 
is isolated. Indeed, the functional matrix of (47) at u = u0 is equal to 

M - E*. 

For the determinant of this matrix not to vanish, it is necessary and suffi
cient that the matrix M not have an eigenvalue equal to unity. 

We shall now answer the question of whether every periodic trajectory 
K\ passing close to the trajectory K described by the solution <p(t) can be 
described by the solution <p[t, g(ui)], where ux is some solution of equa
tion (47). This was just the situation in the plane case (n = 2). I t turns 
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out that for n > 3 the situation is different. Let us examine this question. 
We shall assume that r is a minimal period of the solution <p(t), i.e., that 
the equality 

<p(t0 + t) = <p(t0) 

can be valid only when t = AT, where k is an integer [see §15 (C)]. If the 
trajectory Κχ is close to the trajectory K, then it intersects the surface (43) 
at some point g(ui), where |ui — u0| is close to zero. We shall set 

U 2 = X ( U l ) , U 3 = X(U 2 ) , . . . , U i + i = X(tti), 

Since the trajectory K\ is closed, we can find a point in this sequence co
inciding with the point Ui; let u^+i be the first such point. Then the tra
jectory Ki is described by the solution <p[t, g(ux)], where its minimal period 
is close to the number kr; the solution <p[t, g(ui)] closes only after it goes 
around the trajectory <p(t) k times. In the plane case only the case k = 1 
is possible. We shall call the number k the multiplicity of the trajectory 
K\. For determining double trajectories it is necessary to solve, not equa
tion (47), but the equation 

x(x(u)) — u = 0; 

for determining triple trajectories it is necessary to solve the equation 

X[x(x(u))] - u - 0, 

and so on. The functions x(x(u)), x[x(x(u))], . . . are called iterations 
of the function X(u); the fcth iteration will be denoted by X*(u). Thus to 
find all fc-tuple periodic solutions close to the solution <p(t), the equation 

X*(u) - u = 0 (48) 

must be solved, but from all solutions of equation (48), only those are to 
be taken which are not solutions of equations of multiplicities encountered 
previously; the solution u = u0 of equation (47) is also the solution of any 
equation (48). The functional matrix of equation (48) at u = u0 is ob
viously equal to Mk — E*; thus in order that equation (48) have only one 
solution u = u0 close to u0, it is sufficient that the determinant of the 
matrix Mk — E* not vanish or, what is the same thing, that the matrix 
Mk not have eigenvalues equal to unity, or finally, that the matrix M not 
have eigenvalues equal to V L Thus, in order that there not be periodic 
trajectories of a given multiplicity k in the neighborhood of the trajectory 
K, it is sufficient that the matrix M not have eigenvalues equal to v Ϊ . In 
particular, the matrix M does not have such eigenvalues if the absolute 
values of all its eigenvalues are less than unity. 
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From what has been said, it is evident how important a role the matrix 
M plays in the study of trajectories of the autonomous equation (1) 
[see (3)] which are close to the periodic solution <p(t). We shall now show 
that if equation (7) has a characteristic number equal to unity of multi
plicity one, then for some choice of the surface (43) the matrix M coincides 
with the matrix C* [see (23)]. Let us set 

By Theorem 15 we have 

Ϋ(0 = AW{t), (49) 

where the initial condition 

*(*o) = E 

is fulfilled. Thus the matrix ty(t) represents the solution of the matrix 
equation (49), which is the matrix form of equation (7), and therefore 

*(*o + r) = C. 

Since the matrix C has an eigenvalue equal to unity of multiplicity one, 
we can choose a basis in the space of vectors y [see (A)] such that the 
matrix C can be written in the form (23). Let us now take for the co
ordinates in the phase space of equation (1) [see (3)] the components of the 
vector y, by setting 

x = <p(t0) + y 

[compare (5)]. The coordinates thus obtained in the phase space will 
again be denoted by x , . . . , x11, and the surface (43) will be defined by the 
equations 

x1 = u\ . . . , xn~l = un~\ xn = 0. 

If we differentiate (46) with respect to w1, . . . , un~~l at u = 0, t = t0 + r , 
v = 0 under the assumption that t = t(u) and v = X(u) are functions of 
the variables ul

} . . . , un~~l, we obtain the equality 

C* = M. (50) 

In the case n = 2, the matrix C* is a scalar λ, and the relation (50) gives 
(42). 

If the absolute values of all eigenvalues of the matrix C* are less than 
unity, then there are no periodic solutions of any multiplicity in the 
neighborhood of the trajectory K. This follows from the estimate (36). 

m = οφ% 0 
d& 



CHAPTER 6 

LINEAR ALGEBRA 

This chapter is intended to supplement the basic material of the book. 
We present here those results in the area of linear algebra which have been 
used in some of the more advanced sections. It should be noted that §34 
is based only on the results of §32 and does not use the results of §33 at all. 

32. The minimal annihilating polynomial. Eigenvalues and eigenvectors, 
(A) To each nth-order square matrix 

A = (aj), hj = 1, 2, . . . , n , 

whose elements are real or complex numbers there corresponds a linear 
transformation A of the n-dimensional vector space R; namely, to the 
vector 

x = {x\ . . . , xn) 

of the space R corresponds the vector 

Ax = y = (y\ . . . , yn), 

which is defined by the relation 

3 

To the zero matrix 0 (all of whose elements are zero) corresponds the zero 
transformation 0 which transforms every vector into zero. To the unit 
matrix 

*-(*. <-{; \ti 
corresponds the unit or identity transformation E of R: 

Ex = x. 

If in the space R we introduce the new coordinates xn, . . . , x,n which 
are related to the old coordinates x1, . . . , xn by the transformation 
formulas 

X 7 *SiX y 

or, in matrix form, 
x' = Äx, 

277 
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then the matrix 
A' = SAS-1 (1) 

corresponds to the transformation A in the new coordinate system. Let 
us prove relation (1). We have 

y ' = Sy = SAx = SAS-1*. 

(B) Let A be the linear transformation and A the matrix corresponding 
to the transformation A in some coordinate system. A nonzero vector h 
is called an eigenvector of the transformation A, and the number λ is called 
an eigenvalue of this transformation corresponding to the vector h, if the 
relation 

Ah = Xh (2) 
holds. The determinant of the matrix (a} — ζδ}), 

D(z) = \a) - z b)\ = \A - zE\, 

is called the characteristic polynomial of the matrix A. The coefficients of 
the polynomial D(z) do not depend on the choice of the system of co
ordinates but are completely determined by the transformation A. There
fore the polynomial D(z) is called the characteristic polynomial of the 
transformation A. Furthermore, the number λ is an eigenvalue of the 
transformation A if and only if it is a root of the polynomial D(z). 

We shall prove that the polynomial D(z) is independent of the choice 
of the coordinate system. In the new system of coordinates, the matrix 
SAS"1 corresponds to the transformation A, where S is a certain non-
singular matrix [see (1)]. We have 

\SAS~1 - zE\ = \SAS~1 - zSES-'l = \S(A - zE)S-1\ 

= \S\ · \A - zE\ · l O = |S| · |A - zE\ · {S^1 = |A - zE\. 

Let us now write the relation (A — XE)h = 0, which is equivalent to 
relation (2), in terms of the coordinates 

2 J (ay - λ d})hj = 0 , i = 1, . . . , n. 
i = i 

This system of homogeneous equations has a nontrivial solution h1,. . . , hn 

if and only if the determinant D(X) of this system is equal to zero. Thus 
every root λ of D(z) is an eigenvalue of the transformation A, and con
versely. 

(C) If the eigenvalues λ ι , . . . , λ* of the transformation A are pairwise 
distinct, then the corresponding eigenvectors hi, . . . , h* are linearly in
dependent. 

file:///SAS~1
file:///SAS~1
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The proof is by induction on the number k. For k = 1 this assertion is 
obvious. Let us assume that it is true for k — 1 vectors, and prove it for 
k vectors. Let us assume that aihx + · · · + akhk = 0. Applying the 
transformation A to this relation, we obtain 

aiXihx + · · · + afcXfch* = 0; 

on the other hand, 

X*(aih! H h akhk) = 0. 

If we take the difference of these relations, we obtain 

αι(λι — XjOhx + · · · + ak-i(Kk-i — Xfc)hfc-i = 0. 

Hence, by the induction hypothesis, it follows that αχ = · · · = ak-i — 0. 
Thus if all roots of the characteristic polynomial D{z) are distinct, we 

can take the eigenvectors hx, . . . , hn of A as a basis of the space R. In 
this basis a diagonal matrix corresponds to A. In the general case, the re
duction of the transformation matrix to diagonal form is impossible, and 
we are forced to construct a comparatively complicated theory, which 
we now proceed to do. 

The minimal annihilating polynomial. (D) By well-known rules we can 
add and multiply square matrices of order n, as well as multiply them by 
given numbers; to these operations on matrices correspond the same opera
tions on transformations. Thus if 

/(*) = a0zm + axzm~x + · · · + am 

is a polynomial with real or complex coefficients in z, then by substituting 
the matrix A for the variable z in this polynomial, we obtain the matrix 

f(A) = a0A™ + aiA™-1 + · · · + amE} 

which is a polynomial in A. The polynomial/(A) of the transformation A 
is defined similarly. If f(z) ^ 0 and if f(A) is the zero matrix (in which 
case it is also, obviously, a zero transformation), then the polynomial/(z) 
is said to annihilate the matrix A and the transformation A. Thus the 
characteristic polynomial D{z) of the matrix A annihilates A: 

D(A) = 0. 

For the proof let us consider the ^-dimensional vector space R with the 
basis 

ei , e 2 , . . . , en, 
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and let us study the coordinate system which corresponds to this basis, so 
that 

ey = (0,. . . , 1 , . . . , 0), 

where the coordinate 1 is in thej-th place. We shall denote by A the trans
formation corresponding to the matrix A in the basis chosen. Then we 
have 

Aey = 2 a*e8 
8 

or, what is the same thing, 

Σ (ajE - ijA)e. = 0. (3) 
8 

Let us set 
L){z) = a) - b)z. 

Here L*{z) is a polynomial in z of degree zero or one, and 

(£·(*)) 

is the matrix formed from the polynomials. The cofactor of the element 
L*(z) in this matrix will be denoted by MJ

8(z), so that the relation 

ΣΜΧζ)18;(ζ) = h\D(z) (4) 

holds. Multiplying (3) on the left by the polynomial M{(k) and summing 
over j , we obtain by (4): 

Σ Μί(Α)(α?Ε - S'jA)e, = ζ Jfi(A)Lj(A)e. 
8,j 8,j 

= Σ «5D(A)e. = D(A)e« = 0. 
8 

Thus D(A) transforms all basis vectors of the space R into zero, so that it 
is the zero transformation, which means that the corresponding matrix 
D(A) is also zero: 

D(A) = 0. 

(E) In the set of all polynomials annihilating the matrix A (or the 
transformation A), there exists a unique polynomial Δ(ζ) of minimal 
degree, which is unique up to a numerical factor; this polynomial Δ(ζ) 
is a divisor of all other polynomials which annihilate the matrix A and 
is called the minimal polynomial which annihilates the matrix A. We 
shall adopt the convention that the coefficient of the term of highest degree 
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of the polynomial Δ(ζ) is equal to unity. Whenever the matrix A is real, 
the polynomial Δ(ζ) is real. 

To prove (E), we recall that if f(z) and g(z) are two arbitrary poly
nomials and d(z) is their greatest common divisor, then the identity 

d{z) = p(z)f(z) + q(z)g(z) (5) 

holds, where p(z) and q(z) are suitably chosen polynomials. The existence 
of the identity (5) can be proved by the division algorithm for polynomials. 
From (5) it follows that if the polynomials f(z) and g(z) annihilate the 
matrix A, then their greatest common divisor d(z) also annihilates A. 
From (D) it follows that there exist polynomials which annihilate the 
matrix A. Now let A(z) be a polynomial of minimal degree which an
nihilates A, and let f(z) be an arbitrary polynomial also annihilating A. 
If the polynomial f(z) is not divisible by Δ(ζ), then the greatest common 
divisor of these polynomials would have a degree smaller than that of Δ(ζ) 
and also would annihilate A, but this is impossible by hypothesis. Now if 
A is real, then 

0 = Δ(Χ) = Δ(Α) = Δ(Α). 

Thus, the polynomial Δ(ζ) annihilates A and therefore is divisible by Δ(ζ), 
but this is possible only if Δ(ζ) = Δ(ζ). Thus, proposition (E) is proved. 

(F) Let Δ(ζ) be the minimal annihilating polynomial of the matrix A. 
The number λ is an eigenvalue of the matrix A if and only if it is a root of 
the polynomial Δ(ζ). 

To prove this we denote by A the transformation of the n-dimensional 
vector space which corresponds to the matrix A. We remark that if f(z) 
is an arbitrary polynomial, then 

Ah = Xh implies /(A)h = /(X)h. (6) 

Indeed, we have 

Eh = h, Ah = Xh, A2h = AXh = X2h, . . . , Amh = Xmh. 

Multiplying these relations by the coefficients of the polynomial f(z) and 
summing, we obtain (6). 

Let us assume that X is an eigenvalue of the matrix A; then there 
exists a vector h ^ 0, such that Ah = Xh, and (6) implies Δ(Α)Ιι = Δ(λ)1ι; 
but Δ(Α) = 0, so that Δ(λ) = 0. Conversely, if X is a root of the poly
nomial Δ(ζ), then Δ(ζ) = (z — λ)Γ(ζ). Since A(z) is the minimal an
nihilating polynomial of the matrix A, the polynomial T(z) does not an
nihilate it, so that the matrix T(A) and consequently the transformation 
Γ(Α) are nonzero. Thus there exists a vector x, for which Γ(Α)χ = h' ^ 0, 
and we have 0 = Δ(Α)χ = (A — ΧΕ)Γ(Α)χ = (A — XE)h', so that 
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Ah' = Xh', whence λ is an eigenvalue of the matrix A. Hence, proposition 
(F) is proved. 

If necessary, the vector space R can be taken to be real whenever it has 
only vectors with real coordinates, or as complex whenever it has vectors 
with complex coordinates. If x = (x1, . . . , xn) is a vector of a complex 
space Ä, then x" = (251, . . . , Zn) is the vector which is the complex con
jugate of x. If S is a subspace of a complex space Ä, then the subspace S, 
consisting of all vectors which are complex conjugate to the vectors of S, 
is defined as the complex conjugate of the subspace S. 

The complex (or real) space R is said to be decomposed into a direct 
sum of its subspaces Si and S2 if every vector x from R can be written 
uniquely in the form of a sum: 

X = X! + X2, 

where the vector X; belongs to the subspace Si, i = 1, 2. 
(G) Let Δ(ζ) = Δι(ζ) Δ2(ζ) be a factorization of the minimal poly

nomial annihilating the matrix A into two relatively prime factors. We 
denote by S^ i = 1,2, the linear subspace of the space R consisting of 
all vectors x of R which satisfy the condition Δ;(Α)χ = 0, where A is the 
transformation with matrix A. It turns out that the space R can be de
composed into a direct sum of the subspaces Si and S2. (If the matrix A 
is complex, then in the statement formulated here the space R must be 
considered complex.) Let us now assume that the matrix A is real; then 
it is necessary to distinguish two important cases. (1) The factors Δι(ζ) 
and Δ2(ζ) are real; then the space R and its subspaces Si and S2 can be 
considered real. (2) The factors Δι(ζ) and Δ2(ζ) are complex conjugate; 
then the space R should be considered complex and its subspaces Si and 
$2 turn out to be complex conjugate. 

Let us prove proposition (G). Because the factors Δι(ζ) and Δ2(ζ) are 
relatively prime, the identity 

1 = ρι(ζ) Αι(ζ) + p2(z) A2(z) (7) 

is valid, where pi{z) and p2{z) are suitably chosen polynomials [see (5)]. 
We note that if the factors Δι(ζ) and Δ2(ζ) are real, then the polynomials 
Pi(z) and p2(z) can be chosen as real, since they are obtained by applying 
the division algorithm to the polynomials Δχ(ζ) and Δ2(ζ). Now let x 
be an arbitrary vector of Ä; by (7) we have 

x = P l(A) Ai(A)x + pa(A) Δ2(Α)χ. 

Setting 
Xi = 7>2(A) Δ2(Α)χ, χ2 = ρι(Α) Δχ(Α)χ, 
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we obtain the decomposition x = Χχ + x2, where 

Δχ(Α)χχ = Δχ(Α)ρ2(Α) Δ2(Α)χ = p2(A) Δ(Α)χ = 0, 

Δ2(Α)χ2 = Δ2(Α)Ρι(Α) Δχ(Α)χ = Ρι(Α) Δ(Α)χ = 0, 

so that the vector xt- belongs to the subspace Si. Now if x = x{ + *2 is 
any decomposition of the vector x into a sum in which x!· belongs to Si, 
i = 1, 2, then by (7) we have 

xi = Pl(A) Ai(A)xi + p2(A) Δ2(Α)χ'χ = p2(A) Δ2(Α)(χ'χ + x'2) = xl5 

in exactly the same way x2 = x2, and the uniqueness of the decomposition 
is proved. 

If the matrix A is real and the factors Δχ(ζ) and A2(z) are real, then, 
starting from the real vector x, we obtain real vectors Xi and x2. However, 
if the matrix A is real and the factors Δχ(ζ) and Δ2(ζ) are complex con
jugate, then the subspaces Si and S2 are complex conjugate by definition. 
Thus proposition (G) is proved. 

(H) Let A be a linear transformation of the n-dimensional space R, let 

λχ,λ2, . . . , \ r 

be the set of all eigenvalues of this transformation, let 

A(Z) = (Z- \χγΐ{ζ - \2)k2 . · . ( * - \r)kr 

be the minimal annihilating polynomial of the transformation A, and let 

D(z) = (-l)n(z - λ1)^(ζ - λ2)«2 . . . ( * - \r)«r (8) 

be the characteristic polynomial of the transformation A. Since the 
polynomial D{z) is divisible by the polynomial Δ(ζ), we have 

Qi > ki, i = 1, . . . , r. 

By (G) the space R can be decomposed into a direct sum of the subspaces 
Si, S2) . . . , $r, where S% consists of all vectors x which satisfy the condi
tion 

(A - \iE)ktx == 0. 

Thus the space Si is of dimension g;, and the number qi is called the 
multiplicity of the eigenvalue Xt·. 

We shall prove that the dimension of the space S% is equal to q^ The 
space Si is invariant with respect to the transformation A, that is, ASi is 
contained in Si. Thus, if in the space Si a certain basis is chosen, then 
to the transformation A on Si there corresponds a certain matrix Ai 
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of order piy where pi is the dimension of the space Si. If the basis of R 
consists of the bases of all the spaces Si, then in the basis obtained, there 
will correspond to the transformation A a matrix A consisting of matrices 
Ai, . . . , Ar located along the diagonal of the matrix A. From this it is 
clear that the characteristic polynomial of the transformation A of R 
will be equal to the product 

D1(z)D2(z) . . . Dr(z), 

where Di(z) is the characteristic polynomial of the transformation A con
sidered on the subspace Si. Since Δ{(ζ) = (z — Xi)ki is the annihilating 
polynomial of A on the subspace Si, the transformation A on Si has only 
one eigenvalue Xt-, so that Di(z) has the form (—l)Pi(z — \i)Pi, because 
its degree is equal to the order of the matrix Ai, that is, to the dimension 
Pi of the space Si. Consequently D(z) = (—l)n(z — \i)Pl(z — \2)P2 . . . 
(z — Xr)Pr, and therefore pi = qi [see (8)]. Thus proposition (H) is 
proved. 

33. Matrix functions. In this section we shall make no distinction be
tween the transformation A and the corresponding matrix A, since we 
shall not change the coordinate system. In addition, in this section we 
shall also use some elementary facts from the theory of functions of a 
complex variable (see, for example, Ahlfors, Complex analysis, McGraw-
Hill, New York, 1953). 

Matrix power series. (A) Let 

Δ(Ζ) = (Z - \1)k>(z - \2)*» . " ( * - \ r ) \ 
(1) 

ki > 0, i = 1, . . . , r, ki + k2 + \- kr = k, 

be a minimal annihilating polynomial of the matrix A, where 

λι, λ2, . . . , Xr (2) 

are its pairwise distinct roots. By proposition (F) of §32 the numbers (2) 
constitute the set of all eigenvalues of A. We say that the function W is 
defined on the spectrum of the matrix A if there is a correspondence between 
the eigenvalue \ of the matrix A and the sequence of numbers 

Wi0\\i), W(1\\i), . . . , W^-^iXi), i = 1, . . . , r. (3) 

If W(z) is a function of the complex variable z which is holomorphic at the 
points λΐ, then, if the numbers (3) are regarded as the value of the function 
itself and of its derivatives up to order ki — 1 at the point Xt-, we obtain a 
function defined on the spectrum of the matrix A. If for two functions of 
ζ, the values (3) coincide, respectively, then we shall say that the two 
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functions coincide on the spectrum of the matrix A. Thus two polynomials 
f(z) and g{z) coincide on the spectrum of A if and only if /(A) = g(A). 
Furthermore, it turns out that for any arbitrarily given numbers (3), 
there always exists a unique polynomial φ(ζ) of degree not larger than 
k — 1, whose values on the spectrum of A coincide with the numbers (3), 
i.e., 

^·>(λ.) = w^fr), j = 0 , . . . , hi - 1, i = 1, . . . , r. (4) 

Here the coefficients of φ{ζ) are linear functions of the quantities (3) and 
therefore depend continuously on them. 

We shall prove these statements. If we set h{z) = f(z) — g(z), and if 
f(A) = g(A), then ft(A) = 0. Furthermore, if the values of the poly
nomials f(z) and g{z) coincide on the spectrum of A, then the function 
h(z) vanishes on the spectrum of A. Thus, in order to prove that part of 
the assertion of (A) concerning f(z) and g(z), it is sufficient to prove that 
the polynomial h(z) annihilates the matrix A if and only if it vanishes on 
the spectrum of this matrix. To prove this, let us assume that h(z) an
nihilates A; then by (E) of §32 it is divisible by the polynomial Δ(ζ), and 
therefore λ̂  is a root of multiplicity not less than fcz- [see (1)], and from 
this it follows that it vanishes on the spectrum of A. If the polynomial 
h{z) vanishes on the spectrum of A, then the number λ»· is a root of multi
plicity not less than fc*, and therefore h(z) is divisible by the polynomial 
Δ(ζ) [see (1)]. Hence it follows that h(A) = 0. 

We shall now prove that part of proposition (A) concerning the function 
<p(z). The set of relations (4) can be regarded as a system of linear equa
tions in the coefficients of the polynomial φ{ζ). This system has k equa
tions with k unknowns. To prove statement (A) it is sufficient to show that 
the determinant of this system is distinct from zero, and for this in turn 
it is sufficient to prove that whenever the right-hand sides of these equa
tions vanish, there exists only the zero polynomial φ(ζ) satisfying condi
tions (4). Whenever the right-hand sides of (4) vanish, the polynomial 
φ{ζ) vanishes on the spectrum of the matrix A so that it is divisible by 
Δ(ζ), and, since it is of degree not greater than k — 1, it is identically zero. 
Thus proposition (A) is proved. 

(B) Let A be a real matrix; then its minimal annihilating polynomial 
Δ(ζ) is real [see §32, (E)], so that to each root λ; [see (1)] corresponds a 
complex conjugate root λ; of the same multiplicity. Thus, if the numbers 
(3) satisfy the conditions 

W«\\i) = WWQa), j = 0 , . . . , hi - 1, i = 1, . . . , r, (5) 

the polynomial φ(ζ) defined by (4) is real, so that the matrix <p(A) is also 
real. 
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To prove proposition (B), we shall denote the coefficients of the poly
nomial φ(ζ) by φ1, . . . , <pk. Without going into details, the system (4) 
in the unknowns φ1,. . . , <pk may now be written in the form 

£ &>' - da, a = 1, . . . , k. (6) 
0=1 

By (5) this system has the property that, for each of its equations, there is 
also a complex conjugate equation, i.e., the equation 

Let us now pass from the equalities (6) to their conjugates 

Σ 4? = ?· (7) 
β=ι 

The set of relations (7) represents a system of linear equations in the 
unknowns φ1, . . . , <pk. However, in view of the property which has been 
formulated for (6), it must coincide with (7), the only possible difference 
being the numbering of the equations. Since system (6) has a nonzero 
determinant, its two solutions φ1, . . . , <pk and φ1,..., <pk coincide, that is, 
ψα = φα, a = 1, . . . , k} so that the numbers <pl, . . . , <ph are real. Thus 
proposition (B) is proved. 

Let 
/CO = a0 + axz + a2z2 + · · · + amzm + · · · (8) 

be an analytic function of the complex variable z defined by the series (8) 
with radius of convergence p, so that for \z\ < p the series (8) converges, 
and for \z\ > p it diverges. 

For the sequel we recall that the series 

/'GO = αχ + 2a2z + · · · + mamzm-1 + · · - , 

obtained from (8) by means of formal differentiation, has the same radius 
of convergence as (8) and converges inside the circle of convergence to the 
derivative f'(z) of f(z). 

It can happen that by substituting the matrix A for z in (8), we obtain 
a convergent matrix series 

f(A) = a0E + aiA + --' + amAm + - · · . (9) 

(A matrix series is called "convergent" if the numerical series consisting 
of the elements in the i-th row and /-th column converge for arbitrary 
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i, j = 1,. . . , n.) In this case we say that the function f(z) is defined on 
the matrix A. 

THEOREM 27. We shall retain the notation of proposition (A). If all 
eigenvalues of the matrix A lie inside the circle of convergence of (8), 
i.e., 

|λ;| < p, i = 1, . . . , r, 

then the matrix series (9) converges, so that the matrix/(A) is denned. 
The numbers 

fQa), i = 1, . . . , r, (10) 

which need not be distinct, comprise the set of all eigenvalues of the 
matrix/(A). In addition, if the eigenvalues λ; of the matrix A lie inside 
the circle of convergence of the series defining a certain function g(z), 
so that the matrix g(A) is defined, then, in order that the matrices/(A) 
and g(A) coincide, it is necessary and sufficient that the functions f(z) 
and g{z) coincide on the spectrum of the matrix A. 

Proof. Let us form the partial sum 

fm(z) = a0 + axz + \- amzm 

of the series (8); then for \z\ < p we have 

fj\z) = lim fj\z). 
m—*oo 

In addition, let φγη{ζ) be a polynomial of a degree not exceeding k — 1 
which coincides with the polynomial fm(z) on the spectrum of the matrix 
A [see (A)]. Since the eigenvalues (2) of A satisfy the condition|X;| < p, 
i = 1, . . . , r, we have 

lim ^ ( λ ι ) = /^(λ,) , j = 0, . . . , ki - 1, i = 1, . . . , r. 
m—»oo 

From this it follows by proposition (A) that the sequence of polynomials 
<pm(z) converges coefficient-wise to some polynomial φ(ζ) of degree 
<k — 1, where the polynomial <p(z) and the function f(z) coincide on the 
spectrum of A. Since the polynomials <pm{z) and/m(z) coincide on the spec
trum of A, we have 

UA) = <pm(A). 

As m —> oo the right-hand side tends to φ(Α), and this means that the 
left-hand side also converges as m —> oo. Thus the series (9) converges to 
the matrix /(A) = φ(Α). 
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We shall now prove that the polynomial 

T(Z) = [Z- / (λχ) ]*^ - /(λ2)]** · · · [Z - f(\r)]"r 

annihilates the matrix f(A). For this we consider the polynomial 

«M*) = Wm(z) ~ <Pm{W\klWm{z) — *>m(X2)]* · · · [<*,(*) — <pm(\r)]k' 

( I D 

and show that it annihilates A. The polynomial tpm(z) — <pm(Xi) vanishes 
at z = λ;, so that it is divisible by the expression z — λ;. Thus, the poly
nomial (11) can be written in the form 

ΦΜ(ζ) = *m(z) Δ ( ζ ) , 

so that the polynomial $m(z) annihilates A: 

[<pm(A) - ^(\l)E\kllfPm(A) - <Pm(WE]k* . . . kn(A) - **(λΓ)Α]*Γ = 0. 

Passing to the limit in this relation a s m - » oo, we obtain 

[f(A) - / ( X X ) W ( A ) - f(\2)E]k* ■ ■ ■ V(A) - f(Xr)E]kr = 0, 

which means that the polynomial Γ(^) annihilates the matrix/(A). 
In particular, it follows from what has been proved that all eigenvalues 

of the matrix /(A) are contained among the numbers (10) [see §32, (F)]. 
We shall prove that every number (10) is an eigenvalue of / (A). Let 
hi be the eigenvector of A corresponding to the eigenvalue λ*, so that 

Ah; = \ihi. 

From this it follows, by formula (6) of §32, that /m(A)h; = /m(Xi)ht·. 
Passing to the limit in this relation a s m - > oo, we obtain 

f(A)hi = fQ^hi. 

Thus the number/(A;) is an eigenvalue of the matrix/(A). 
Let us now assume that the circle of convergence of the function g(z) 

also contains all the'eigenvalues of A. It then follows from what we have 
proved that the matrix gm(A) is defined and that there exists a polynomial 
ψ(ζ) of degree not exceeding k — 1 which coincides with the function g(z) 
on the spectrum of A, where ψ(Α) = g{A). Now if /(A) = g(A), then 
<p(A) = ^(A), and by proposition (A) the polynomials <p{z) and φ(ζ) 
coincide on the spectrum of A, so that f(z) and g(z) must also coincide 
on the spectrum of A. Conversely, if the functions/(z) and g{z) coincide 
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on the spectrum of A, then the polynomials φ(ζ) and ψ(ζ) also coincide on 
this spectrum, so that, by proposition (A), <p(A) = ψ(Α), which implies 
f(A) = g(A). Thus Theorem 27 is proved. 

Implicit functions of matrices. Let F(z, w) be a function of two complex 
variables defined by the series 

F(z, w) = a + bz + cw + dz2 + ezw+fw2 -\ . (12) 

When the order of the factors in the terms of this series changes (for ex
ample, when the product zawß is replaced by wßza)> the function F(z,w) 
does not change. Therefore, if we replace the arguments z and w by matrices 
A and B in (12), it is natural to confine ourselves to the case when the 
matrices A and B commute. If (12) converges for arbitrary values of the 
variables z and w, then it can be proved that by substituting for z and w 
in this series any matrices A and B which commute, we obtain a con
vergent matrix series which will define a certain matrix which we shall 
denote by F(Ay B). However, we shall not prove the convergence of this 
series in the general case, since we shall consider below only particular 
cases in which there is a finite number of terms depending on z, so that in 
fact the question is really that of the convergence of a series of the one 
complex variable w. 

(C) Let F(z, w) be an analytic function of two variables defined by (12), 
which is convergent for all values z, w, and let A be a given matrix. Further, 
suppose that we have a correspondence between every eigenvalue λ; of 
A and a number μ2· which satisfies the conditions 

F(\i, Mi) = 0, A F(Xiy μ . ) ^ o, i = 1, . . . , r. (13) 

Then there exists a matrix B, which commutes with A, satisfying the con
dition 

F(A, B) = 0. (14) 

Furthermore, if the coefficients of (12) and the matrix A are real and if for 
every two complex conjugate eigenvalues λ< and Xy = λ; of the matrix A 
the corresponding numbers μι and μ;· are also complex conjugate (μζ· = jay), 
then there exists a real matrix By which commutes with A and which 
satisfies condition (14). 

We shall prove proposition (C). I t follows from (13) and the implicit 
function theorem in the complex case that for any i = 1, . . . , r there 
exists a function W(z) = W%(z) which is defined for z close to λ; and which 
satisfies the conditions 

F(z, W(z)) = 0, (15) 

W(\i) = Mi, t = l r. (16) 
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To determine the derivatives Wij)(\i) of W(z) at the point z = λ;, it is 
necessary to differentiate successively relation (15) with respect to z and 
then to substitute in it z = Xt·: 

£jF(z,W(z))\.^t = 0. (17) 

For these relations, the numbers 

Wij)(\i), j = 1 , . . . , fc< - 1, i = 1 , . . . , r, (18) 

can be determined successively. Starting from (16) and (18), we shall 
construct the polynomial φ(ζ) which satisfies conditions (4). We shall 
show that the matrix B — <p(A), which obviously commutes with A, 
satisfies (14). 

For the proof we shall substitute in (12) the value w = <p(z). We then 
obtain the function Φ(ζ) = F[z, <p(z)] of z. To prove (14) it is sufficient 
to show that Φ(ζ) is equal to zero on the spectrum of the matrix A (see 
Theorem 27). By calculating the derivatives Φ{'\\%) of Φ(ζ) at the point 
λΐ> j = 0, 1,. . . , hi: — 1, we can substitute the function W(z) for the 
polynomial <p(z)> since the respective derivatives of these functions of 
orders 0, 1, . . . , fcy — 1, at the point \i are equal. But by replacing the 
polynomial <p(z) in F(zy φ(ζ)) by the function W(z) defined in the neighbor
hood of λ;, we obtain an identity [see (15)]. Thus the function Φ(ζ) vanishes 
on the spectrum of A. 

We shall now prove that if the coefficients of (12) and the matrix A 
are real and the numbers μ» satisfy the requirement of conjugacy, i.e., if 

W(K) = W(M, t = l , . . . , r , 
then the polynomial φ(ζ), as well as the matrix B = φ(Α), is real. Indeed, 
under these hypotheses the numbers W(;)(Xi), coming from (17), satisfy 
(5), so that the polynomial <p(z) is real [see (B)]. Thus, proposition (C) 
is proved. 

(D) The analytic function ez of z is defined by the series 

eZ = 1 + z + 2i + --- + h. + ···' (19) 

which converges for all values of z. As is known, the identity ez+w = ez · ew, 
which follows from the properties of (19), is valid for two arbitrary com
plex numbers z and w. Hence it follows that the identity 

6A+B = eA.eB ( 2 0 ) 

is valid for two commuting square matrices A and B. Thus, for any non-
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singular matrix A there exists a matrix B, commuting with A, which 
satisfies the condition 

eB = A. (21) 

In addition, we find that for any real nonsingular matrix A there exists a 
real matrix Βχ, which commutes with A and satisfies the condition 

e*i = A2. (22) 

To prove that (21) can be solved for B it is sufficient to apply proposition 
(C) to the function F(z, w) = ew — z. Indeed, since the matrix A is 
nonsingular, all its eigenvalues λ; are distinct from zero, so that there exist 
numbers μ; which satisfy the condition eM* — λ» = 0 [see the first of the 
relations (13)]; the second of the relations (13) are obviously satisfied here. 

To prove the existence of a real matrix Βχ satisfying condition (22), it 
is sufficient to apply the second part of proposition (C) to the function 
F(z, w) = ew — z2. Indeed, if λ; is a real positive or negative number, 
then we set μι = In λ?, where we take the real branch of the logarithm. 
If, however, λ* is a complex number, then we can take complex conjugate 
numbers for W(Xi) and W(\i). Thus, proposition (D) is proved. 

34. The Jordan form of a matrix. (A) The sequence of vectors 

hi, . . . , hm (1) 

of the space R is called a basis set or a series with eigenvalue λ for the trans
formation A if the relations 

Ahi = Xhi, Ah2 = Xh2 + hi, . . . , Ahm = Xhm + hm_i, hx ^ 0, 

are fulfilled. If the matrix A of the transformation A is real, then the 
sequence 

Ei, . . . , Em (2) 

obviously forms a series with eigenvalue λ. The series (1) and (2) will 
be called complex conjugate. If the number λ and the vectors (1) are real, 
then the series is considered real. 

THEOREM 28. There exists a basis of the space R consisting of all the 
vectors of one or more series for the transformation A. If the matrix A 
is real, then the series constituting the basis can be chosen in such a 
way that a series with real eigenvalues is real and series with complex 
eigenvalues are pairwise conjugate. 

Proof. Let 
A(z) = (z - \i)*i ...(z- \r)kr (3) 
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be the minimal polynomial annihilating the matrix A, where 

λχ, . . . , Xr 

are distinct eigenvalues of A. By proposition (G) of §32, the space R can 
be decomposed into a direct sum of the subspaces S\, . . . , Sr corresponding 
to the factors (3), so that the space Si consists of all vectors x which satisfy 
the condition (A — λ»Έ)*ΐχ = 0. This means that the annihilating poly
nomial of the transformation A taken on the space Si is the polynomial 
(z — \i)ki. It is easy to see that this polynomial is minimal. 

Let us assume that A is real. First we combine all the factors of (3) 
with real λζ· into the factor A\(z) and all the other factors into the factor 
A2(z). Then A(z) = Ai(z) A2(z) is a factorization into real relatively prime 
factors, and the corresponding decomposition of the space R into a direct 
sum of Ri and R2 may be considered real. The space Rx is now decom
posed into a sum of real summands corresponding to real eigenvalues λ;, 
and in these real direct summands we shall later construct bases consisting 
of real series. The space R2 will be decomposed into pairwise complex 
conjugate direct summands corresponding to the complex conjugate eigen
values, and in these complex conjugate spaces we shall later construct 
bases consisting of complex conjugate series; here it is sufficient to con
struct the basis from a series in one of the two complex conjugate spaces, 
and in the other space to take the complex conjugate basis. 

Thus it is sufficient for us to prove that if the linear transformation A 
operating in the vector space S has the minimal annihilating polynomial 
(z — \)k, then in this space we can choose a basis consisting of series for 
the transformation A, and, moreover, of real series if the space S, the 
matrix A, and the eigenvalue λ are all real. 

We shall go on to the proof of this statement. For brevity we assume 
that C = A — XE, and we denote by Ti the set of all vectors x of S which 
satisfy the condition 

C'x = 0. 

Then we have 

S = Tk D Tk~l D · · · D T1 D T° = 0. 

Let 
hi, . . . , hi, i = 1, . . . , k, 

be a system of vectors from Ti which are linearly independent with respect 
to the space 7\·_ι; this means that the vector 

a\hi + · · · + arhi 
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can belong to space Ti-i only if 

oi = . . . = ar = 0. 

We shall show that for fixed i and j the vectors 

hU = Cyh?, j < i, (4) 

belong to the space Ti-j and are linearly independent with respect to the 
space 2\·_/_ι. We have 

C*-Vi-i = Cii? = 0 , a = 1, . . . , r, 

and consequently the vectors (4) belong to the space 2\·_,\ Let us assume 
now that the vector 

aihi_y + · · · + arhi_y = x 

belongs to the space Ti-j-χ. Then we have 

0 = C*-'-1* = C'-^aihJ + · · · + arhi), 

and this means that the vector aih] + · · · + o>rK belongs to the space 
Ti-i so that the numbers αχ, . . . , ar are zero. 

Let us select a maximal system of vectors 

h ^ , . . . , Kk (5) 

of Tk which are linearly independent with respect to Τ*_ι. According to 
what has been proved, the vectors 

h£_i = Ch£, a = 1 , . . . , rk, (6) 

belong to Tk-i and are linearly independent with respect to Tk-2) thus 
system (6) can be augmented to a maximal system 

hfc_i, . . . , hfcJTi, r*_i > rk, (7) 

of vectors of Τ&-ι which are linearly independent with respect to Tk-2· 
Continuing this process, we shall construct in the space Ti(i > 0) a 
maximal system of vectors 

hi, . . . , h?, (8) 

which are linearly independent with respect to 2\·—ι; here the relations 

h? = Ch?+i, a = 1, . . . , r,·+ι; r» > ri+h 

will be fulfilled. 
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We shall now prove that the set Σ,· of all vectors which belong to all 
systems (8), i = j , j — 1, . . . , 1, constitutes a basis of the space Tj. The 
proof will be carried out by induction on the number j . For j = 1 the 
system 2Zi coincides with the system (8) and therefore is a basis of the 
space Τχ, T0 = 0. Let us assume that our assertion has been proved for 
the system Σ,·, and we shall prove it for the system Σ ; + ι · Let us assume 
that the relation 

a ih l + i + · · · + ar.+1h Jft1 + bxh) + ■ ■ · + 6r . i# + · · - = 0 (9) 

holds. Applying the transformation Bj to (9) we obtain 

Oihi + - · · + a r . + 1 h? + 1 = 0, 

and this is possible only if a,\ = · · · = arj+1 = 0; thus relation (9) 
can contain only vectors of the system Σ*> so that by the induction 
hypothesis, relation (9) is trivial. Now let x be an arbitrary vector of the 
space Tj+χ. Since the system (8) for i = j + 1 forms a maximal linearly 
independent system for the space Ty, there exists a vector 

y = aihy+i H h a ^ h / f t i 1 

such that x — y belongs to Tj and, by the induction hypothesis, may be 
expressed linearly in terms of the vectors of the system £y, so that the 
vector x may be expressed linearly in terms of the vectors of Σ*+ι· 

Thus we have shown that Σ& is a basis of the space S = TV 
If the space S, the matrix A, and the number λ are real, then by taking 

the vectors of (5) as real, we obtain a real system (6), which can be aug
mented to the real system (7). Continuing in this way, we obtain the real 
system £fc. 

We shall now show that the system ]Tfc consists of series, i.e., we shall 
show that the vectors hf, hf, . . . form a series with eigenvalue λ. We have 

0 = Ch? = (A - XE)h1, 

so that Ah? = Xhf; further, 

h? = Ch? = (A - XE)hS, 

so that Ahg = Xhf + hf, and so on. Thus Theorem 28 is proved. 
In the basis constructed by means of Theorem 28, there corresponds to 

the transformation A not the original matrix A = (a}), but some new 
matrix B = (6J) which has a particularly simple form, called the Jordan 
form. Thus Theorem 28 is a theorem on the reduction of a matrix to Jordan 
form. Let us examine this question in detail. 
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(B) By a Jordan block of the mth-order with eigenvalue λ we shall 
mean a square matrix (g}) of mth-order which is defined by the relations 

Qi = λ, i = 1, 

ti = 0, 
i.e., the matrix 

. . , m; 0;+i = 1, 

j — i < 0 and 

λ 1 0 
0 λ 1 
0 0 λ 

i = 1 , . . . , m 

i - * > i; 

... o 

... o 

... o 

. . . λ 

... o 

o] 
0 
0 

1 

xj 
0 0 0 

(0 0 0 

It turns out that for every nth-order square matrix A, a nonsingular square 
matrix S may be chosen such that the matrix B = SAS^1 which is ob
tained from the matrix A by a transformation of the matrix S is of Jordan 
form, i.e., consists of one or more Jordan blocks located along its principal 
diagonal, while all the elements not contained in the Jordan blocks are 
equal to zero. 

Let us prove this. Let R be an n-dimensional vector space and A a 
linear transformation corresponding (in a certain coordinate system) to 
the matrix A. Now let fi, . . . , fn be a basis of the space R consisting of 
series (see Theorem 28). We shall assume that the vectors f i, . . . , fn 
are arranged in such an order that the vectors of each series follow one 
another in the sequence f x, . . . , fn. We shall denote by B = (&}) the 
matrix of the transformation A in the basis fi, . . . , fn. Let 

hi = fi, "■m — l»i 

be the first series appearing in the sequence f u . . . , fw, and let λ be the 
corresponding eigenvalue, 
of a series, we have 

Then, as follows directly from the definition 

6J = λ, i = 1, . . . , m; bl+i = 1 , i = 1, . . . , m — 1; 

b) = 0, i + 1 < j < m and i > j < m. 

Thus the first Jordan block in the matrix B corresponds to the first series 
of the sequence fx,. . . , fn. In exactly the same way the second Jordan 
block in the matrix B corresponds to the second series of the basis f χ, . . . , f n, 
and so on. Since the matrix A can be transformed into B [see §32, (A)], 
we have B = SAS"1, which proves proposition (B). 



INDEX 

active element, 83 
admittance, 86 
amplitude, 30, 76 
Andronov, 236 
annihilating polynomial, 277 ff 
asymptotically stable, 202, 238, 244, 

262 
automatic control, 213 
autonomous systems, 103 ff, 191, 

201 ff, 234, 262 

basis set (see also series) 97, 291 
basis vectors, 96 
boundary-value problem, 186 
branches of a saddle, 246 

capacitance, 82 
capacitor, 81 
center, 119 
centrifugal governor, 213 ff 
characteristic equation, 43, 95 
characteristic exponent, 148 
characteristic line, 124 
characteristic number, 148 
characteristic polynomial, 43, 278 
characteristics, 187 
charge, 82 
closed trajectory, 106, 221 
coarse cycle; see rough cycle 
coefficient of elasticity, 31 
completely unstable, 211, 239, 244 

limit cycle, 221 
complex amplitudes, method of, 41, 76 
complex equations, 33 
complex solutions, 48 
components of a vector, 46 
condenser, 81 
conjugate vectors, 47 
continuity of solutions, 170 ff 

in the initial values, 178 ff, 198 ff 
continuous dependence on parameters, 

170 ff, 193 ff 
contraction mappings, 151 
current, 81 
current source, 83 
cycle, 106 

damping, 89 
degenerate node, 121, 123 
differentiability of solutions, 170 ff, 

197 ff, 223 
differentiation of a determinant, 131 
differentiation operator, 43 
differentiation with respect to a 

system, 204 
domain of definition, 2, 19 

eigenvalue, 95, 277 
eigenvector, 95, 277 
electrical circuits, 80 ff 
electron tube, 84 
elementary divisors, 102 
elimination method, 67 
equilibrium state, 106, 201 ff, 231, 

244 ff 
equivalent equations, 145 
Euler's formulas, 36 
existence theorems, 3, 18, 36, 150 ff 

filter, 93 
first integral, 181 
first-order equations, 1 
focus, 119, 257 
forced oscillations, 79 
free term, 22, 39, 127 
frequency, 31, 76 
fundamental matrix, 130, 144 
fundamental system of solutions, 44, 

49, 51, 98, 127, 129, 139 
fundamental theorem of algebra, 2-3 

global theorems, 150, 192 ff 

Hadamard's lemma, 172 
half-life, 6 
Hamiltonian system, 188 
harmonic oscillator, 30, 76, 79 
homogeneous equation, 11, 39, 42 
homogeneous function, 10 
Hurwitz' theorem, 58 

impedance, 86 
indefinite integral, 7 

296 



INDEX 297 

inductance, 82 
inductor, 81 
initial conditions, 3 
initial values, 3, 20 

continuity and differentiability in, 
178 ff, 198 ff, 223 

integral curve, 4, 23 
integral equation, 151 
integral theorems, 150, 192 ff 
interval of definition; see domain of 

definition 
invariants, complete system of, 146 
isolated solution, 221 
iteration, 275 

Jordan form, 95, 97, 291 ff 

Kirchhofes laws, 84, 238 
Kronecker symbol, 68 

lagging argument, 105 
Lagrange's formula, 161 
length (of a series or basis set), 102 
limit cycle, 220 ff 

criterion for existence of, 227 
linear dependence, 47, 128, 138 
linear differential equations, 39 

with constant coefficients, 41 ff 
with variable coefficients, 127 ff 

linearization, 209, 240 
Liouville's formula, 131, 143, 273 
Lipschitz condition, 19, 155-156, 161 
load resistance, 93 
local theorems, 150, 170 
loop currents, 85 
Lyapunov function, 204, 241, 265 
Lyapunov stable, 202, 213, 261, 272 
Lyapunov's theorem, 146, 201 ff, 264 

matrix form of linear equations, 134 
matrix function, 284 
maximum interval of existence, 20, 

106, 127, 189 
minimal annihilating polynomial, 277 ff 
multiple roots, 50 
multiplicity of a trajectory, 275 
mutual induction, 83, 238 

natural frequency, 90 
natural oscillation, 80 
nodal voltages, 86 

node, 117 
nonautonomous system, 188 
nonhomogeneous equation, 11, 62 
nonuniformity of performance, 219 
nonuniqueness, 17 
norm, 152, 162 
normal system, 19, 22, 25, 94, 159, 

190, 201, 234 
normalizable system, 74 

ω-limit point, 227 
ω-limit set, 227 
Ohm's law, 81 
open circuit, 88 
operational notation, 41 
order of a system, 26, 27 
oscillatory loop, 87 

parameters 
dependence on, 170 ff, 178 ff, 193 ff 
differentiability in terms of, 170 ff, 

197 ff 
partial differential equation, 186 
passive element, 83 
pendulum, 31 
period, 107 
periodic coefficients, 144 
periodic solution, 106, 221, 229, 231, 

261 ff 
phase, 30 
phase plane, 115, 221 
phase space, 103 ff, 108, 191 
phase trajectory, 109, 116 
phase velocity, 109 
Picard's approximation theorem, 3, 

150 ff 
Poincaro, 220 
positive definite, 205 
principal minor, 60 

quadratic form, 205 
quadratures, 6 
quasipolynomial, 62 

radioactive decay, 5 
reduction to normal system, 25 
reduction of order, 136, 142 
resistance, 81 
resistor, 81 
resonance, 79, 91 
rough cycle, 226, 235 



298 INDEX 

saddle, 118, 244, 246 
semistable limit cycle, 221, 235 
semistable state, 112 
separation of variables, 9, 11, 24 
series, 291 
shift formula, 51 
singular solutions, 30 
solution of a differential equation, 2 
spectrum of a matrix, 284 
spiral, 120, 232 
stability, 41, 200 ff, 219, 261 ff 
stable focus, 120 
stable limit cycle, 221 
stable node, 117, 244, 254 
stable polynomial, 57 
stable solution, 78, 111 
steady-state process, 78, 94 
steam engine, 213 ff 
succession function, 223, 224, 226, 

234, 236 
succession mapping, 274 
successive approximations, 151, 158 
successor, 223 
symbolic notation, 42 
system of equations, 26 

three-terminal element, 236 ff 
torus, 114 
trajectory, 105, 189, 221, 245, 253 ff 
transformation of variables, 99 

transformer, 91 
transformer ratio, 93 
transient process, 78 
triangular matrix, 65 
triode, 236 

characteristic of, 236 
two-terminal element, 81 

undetermined coefficients, 70, 102 
uniform convergence, 152, 162 
uniqueness theorems, 18 
unstable focus, 120, 244 
unstable node, 118, 244 

vacuum-tube oscillator, 236 ff 
Vandermonde's determinant, 45 
variation of parameters, 12, 133, 141 
variational equations, 174, 180 
vector, 46, 160 
voltage drop, 81 
voltage source, 83 
Vyshnegradskiy, 213 ff 

theses of, 220 

Watt, 213 
Witt, 264 
Wronskian, 130, 132, 140 

ω-limit point, 227 
ω-limit set, 227 

ABCDE698765432 


